Suppr超能文献

天然抗癌剂斑蝥素通过靶向 Cdc1 介导的内质网重塑来改变 GPI-锚定蛋白的分拣。

The natural anticancer agent cantharidin alters GPI-anchored protein sorting by targeting Cdc1-mediated remodeling in endoplasmic reticulum.

机构信息

From the Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066 Madhya Pradesh, India.

From the Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066 Madhya Pradesh, India

出版信息

J Biol Chem. 2019 Mar 15;294(11):3837-3852. doi: 10.1074/jbc.RA118.003890. Epub 2019 Jan 18.

Abstract

Cantharidin (CTD) is a potent anticancer small molecule produced by several species of blister beetle. It has been a traditional medicine for the management of warts and tumors for many decades. CTD suppresses tumor growth by inducing apoptosis, cell cycle arrest, and DNA damage and inhibits protein phosphatase 2 phosphatase activator (PP2A) and protein phosphatase 1 (PP1). CTD also alters lipid homeostasis, cell wall integrity, endocytosis, adhesion, and invasion in yeast cells. In this study, we identified additional molecular targets of CTD using a strain that expresses a cantharidin resistance gene (), encoding a SAM-dependent methyltransferase that methylates and inactivates CTD. We found that CTD specifically affects phosphatidylethanolamine (PE)-associated functions that can be rescued by supplementing the growth media with ethanolamine (ETA). CTD also perturbed endoplasmic reticulum (ER) homeostasis and cell wall integrity by altering the sorting of glycosylphosphatidylinositol (GPI)-anchored proteins. A CTD-dependent genetic interaction profile of revealed that the activity of the lipid phosphatase cell division control protein 1 (Cdc1) in GPI-anchor remodeling is the key target of CTD, independently of PP2A and PP1 activities. Moreover, experiments with human cells further suggested that CTD functions through a conserved mechanism in higher eukaryotes. Altogether, we conclude that CTD induces cytotoxicity by targeting Cdc1 activity in GPI-anchor remodeling in the ER.

摘要

斑蝥素 (CTD) 是一种由几种斑蝥产生的强效抗癌小分子。几十年来,它一直被用作治疗疣和肿瘤的传统药物。CTD 通过诱导细胞凋亡、细胞周期停滞和 DNA 损伤,以及抑制蛋白磷酸酶 2 磷酸酶激活剂 (PP2A) 和蛋白磷酸酶 1 (PP1),来抑制肿瘤生长。CTD 还会改变酵母细胞中的脂质稳态、细胞壁完整性、内吞作用、黏附和侵袭。在这项研究中,我们使用表达斑蝥素抗性基因 () 的菌株来鉴定 CTD 的其他分子靶标,该基因编码一种 SAM 依赖性甲基转移酶,可甲基化并使 CTD 失活。我们发现 CTD 特异性影响磷脂酰乙醇胺 (PE) 相关功能,可通过在生长培养基中添加乙醇胺 (ETA) 来挽救。CTD 还通过改变糖基磷脂酰肌醇 (GPI)-锚定蛋白的分拣来扰乱内质网 (ER) 稳态和细胞壁完整性。对的 CTD 依赖性遗传相互作用谱的研究表明,脂质磷酸酶细胞分裂控制蛋白 1 (Cdc1) 在 GPI-锚定重塑中的活性是 CTD 的关键靶标,与 PP2A 和 PP1 活性无关。此外,人类细胞的实验进一步表明,CTD 通过在真核生物中保守的机制发挥作用。总之,我们得出结论,CTD 通过靶向 ER 中 GPI-锚定重塑中的 Cdc1 活性来诱导细胞毒性。

相似文献

3
The Crg1 N-Terminus Is Essential for Methyltransferase Activity and Cantharidin Resistance in Saccharomyces cerevisiae.
Biochemistry. 2019 Apr 2;58(13):1799-1809. doi: 10.1021/acs.biochem.8b01277. Epub 2019 Mar 12.
4
The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling.
Mol Biol Cell. 2011 Aug 15;22(16):2924-36. doi: 10.1091/mbc.E11-04-0294. Epub 2011 Jun 16.
5
Protein sorting upon exit from the endoplasmic reticulum dominates Golgi biogenesis in budding yeast.
FEBS Lett. 2024 Mar;598(5):548-555. doi: 10.1002/1873-3468.14830. Epub 2024 Feb 23.
6
Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface.
J Lipid Res. 2016 Mar;57(3):352-60. doi: 10.1194/jlr.R062760. Epub 2015 Oct 8.
8
GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics.
Biochim Biophys Acta. 2012 Aug;1821(8):1050-8. doi: 10.1016/j.bbalip.2012.01.004. Epub 2012 Jan 11.
9
Cdc1p is a Golgi-localized glycosylphosphatidylinositol-anchored protein remodelase.
Mol Biol Cell. 2020 Dec 15;31(26):2883-2891. doi: 10.1091/mbc.E20-08-0539. Epub 2020 Oct 28.
10
Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER.
J Cell Biol. 2022 Mar 7;221(3). doi: 10.1083/jcb.202111095. Epub 2022 Jan 11.

引用本文的文献

2
Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer.
Extracell Vesicles Circ Nucl Acids. 2023 Jun;4(2):195-217. doi: 10.20517/evcna.2023.17. Epub 2023 May 18.
3
Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe.
J Proteome Res. 2023 Mar 3;22(3):919-930. doi: 10.1021/acs.jproteome.2c00728. Epub 2023 Jan 26.
4
Targeted Lipidomics Reveal the Effect of Perchlorate on Lipid Profiles in Liver of High-Fat Diet Mice.
Front Nutr. 2022 Mar 14;9:837601. doi: 10.3389/fnut.2022.837601. eCollection 2022.
5
Cantharidin downregulates PSD1 expression and inhibits autophagic flux in yeast cells.
FEBS Open Bio. 2022 May;12(5):1017-1035. doi: 10.1002/2211-5463.13196. Epub 2022 Mar 29.
6
Potential Physiological Relevance of ERAD to the Biosynthesis of GPI-Anchored Proteins in Yeast.
Int J Mol Sci. 2021 Jan 21;22(3):1061. doi: 10.3390/ijms22031061.
7
Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives.
Bioorg Med Chem. 2021 Feb 15;32:116012. doi: 10.1016/j.bmc.2021.116012. Epub 2021 Jan 9.
8
Tautomycetin Synthetic Analogues: Selective Inhibitors of Protein Phosphatase I.
ChemMedChem. 2021 Mar 3;16(5):839-850. doi: 10.1002/cmdc.202000801. Epub 2020 Dec 10.
9
Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22061-22067. doi: 10.1073/pnas.2010661117. Epub 2020 Aug 24.
10
Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways.
Molecules. 2020 Jul 19;25(14):3279. doi: 10.3390/molecules25143279.

本文引用的文献

2
Activation of the Unfolded Protein Response by Lipid Bilayer Stress.
Mol Cell. 2017 Aug 17;67(4):673-684.e8. doi: 10.1016/j.molcel.2017.06.012. Epub 2017 Jul 6.
3
Molluscum Contagiosum: An Update.
Recent Pat Inflamm Allergy Drug Discov. 2017;11(1):22-31. doi: 10.2174/1872213X11666170518114456.
4
Cytosolic proteostasis through importing of misfolded proteins into mitochondria.
Nature. 2017 Mar 16;543(7645):443-446. doi: 10.1038/nature21695. Epub 2017 Mar 1.
5
Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia.
Mol Cells. 2016 Dec;39(12):869-876. doi: 10.14348/molcells.2016.0023. Epub 2016 Dec 13.
7
Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9967-76. doi: 10.1073/pnas.1611839113. Epub 2016 Aug 22.
8
A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.
Mol Cell. 2016 Aug 4;63(3):514-25. doi: 10.1016/j.molcel.2016.06.022. Epub 2016 Jul 21.
9
Membranous CD24 drives the epithelial phenotype of pancreatic cancer.
Oncotarget. 2016 Aug 2;7(31):49156-49168. doi: 10.18632/oncotarget.9402.
10
Endoplasmic Reticulum Stress and Associated ROS.
Int J Mol Sci. 2016 Mar 2;17(3):327. doi: 10.3390/ijms17030327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验