a Department of Educational Psychology , University of Kansas , Lawrence , KS , United States.
b SAS Institute Inc , Cary , NC , United States.
Multivariate Behav Res. 2019 Mar-Apr;54(2):192-223. doi: 10.1080/00273171.2018.1512847. Epub 2019 Jan 20.
The mathematical connection between canonical correlation analysis (CCA) and covariance structure analysis was first discussed through the Multiple Indicators and Multiple Causes (MIMIC) approach. However, the MIMIC approach has several technical and practical challenges. To address these challenges, a comprehensive COSAN modeling approach is proposed. Specifically, we define four COSAN-CCA models to correspond with four possible combinations of the data to be analyzed and the unique parameters to be estimated. In terms of the data, one can analyze either the unstandardized or standardized variables. In terms of the unique parameters, one can estimate either the weights or loadings. Besides the unique parameters of each COSAN-CCA model, all four COSAN-CCA models also estimate the canonical correlations as their common parameters. Taken together, the four COSAN-CCA models provide the correct point estimates and standard error estimates for all commonly used CCA parameters. Two numeric examples are used to compare the standard error estimates obtained from the MIMIC approach and the COSAN modeling approach. Moreover, the standard error estimates from the COSAN modeling approach are validated by a simulation study and the asymptotic theory. Finally, software implementation and future extensions are discussed.
首先通过多指标多原因(MIMIC)方法讨论了典型相关分析(CCA)和协方差结构分析之间的数学联系。然而,MIMIC 方法存在一些技术和实际挑战。为了解决这些挑战,提出了一种全面的 COSAN 建模方法。具体来说,我们定义了四个 COSAN-CCA 模型,以对应要分析的数据和要估计的唯一参数的四种可能组合。就数据而言,可以分析未标准化或标准化变量。就唯一参数而言,可以估计权重或载荷。除了每个 COSAN-CCA 模型的唯一参数外,这四个 COSAN-CCA 模型还将典型相关性作为其共同参数进行估计。总的来说,这四个 COSAN-CCA 模型为所有常用的 CCA 参数提供了正确的点估计和标准误估计。使用两个数值示例比较了从 MIMIC 方法和 COSAN 建模方法获得的标准误估计。此外,通过模拟研究和渐近理论验证了 COSAN 建模方法的标准误估计。最后,讨论了软件实现和未来扩展。