Wang Chong
IEEE Trans Neural Netw. 2007 May;18(3):905-10. doi: 10.1109/TNN.2007.891186.
As a dimension reduction algorithm, canonical correlation analysis (CCA) encounters the issue of selecting the number of canonical correlations. In this letter, we present a Bayesian model selection algorithm for CCA based on a probabilistic interpretation. A hierarchical Bayesian model is applied to probabilistic CCA and learned by variational approximation. This method not only estimates the model parameters, but also automatically determines the number of canonical correlations and avoids overfitting. Experiments show that it performs better compared with maximum likelihood and some other model selection methods.
作为一种降维算法,典型相关分析(CCA)面临着选择典型相关数量的问题。在这封信中,我们基于概率解释提出了一种用于CCA的贝叶斯模型选择算法。将分层贝叶斯模型应用于概率CCA,并通过变分近似进行学习。该方法不仅估计模型参数,还能自动确定典型相关的数量并避免过拟合。实验表明,与最大似然法和其他一些模型选择方法相比,它的性能更好。