Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland.
Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK.
Mol Cell. 2019 Feb 21;73(4):749-762.e5. doi: 10.1016/j.molcel.2018.11.032. Epub 2019 Jan 17.
The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric BCD complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products.
将唑杂环引入肽骨架是许多具有治疗潜力的化合物生物合成的主要步骤。其中之一是微菌素 B17,一种细菌拓扑异构酶抑制剂,其活性取决于 McbBCD 合成酶复合物将前体肽中选定的丝氨酸和半胱氨酸残基转化为噁唑和噻唑。McbBCD 的晶体结构揭示了一个具有两个结合底物肽的八聚体 BCD 复合物。每个 McbB 二聚体夹住 N 端识别序列,而修饰肽的 C 端杂环被困在 McbC 的活性位点中。McbD 和 McbC 的活性位点彼此远离,这需要肽底物在它们之间交替穿梭,同时仍然与 McbB 二聚体连接。唑合酶的原子水平视图是深入理解和控制一大类核糖体合成天然产物生物合成的起点。