Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.
Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia.
J Neurochem. 2019 Apr;149(2):269-283. doi: 10.1111/jnc.14667. Epub 2019 Feb 12.
Contributions of damaged mitochondria to neuropathologies have stimulated interest in mitophagy. We investigated triggers of neuronal mitophagy by disruption of mitochondrial energy metabolism in primary neurons. Mitophagy was examined in cultured murine cerebellar granule cells after inhibition of mitochondrial respiratory chain by drugs rotenone, 3-nitropropionic acid, antimycin A, and potassium cyanide, targeting complexes I, II, III, and IV, respectively. Inhibitor concentrations producing slow cellular demise were determined from analyses of cellular viability, morphology of neuritic damage, plasma membrane permeability, and oxidative phosphorylation. Live cell imaging of dissipation of mitochondrial membrane potential (ΔΨ ) by drugs targeting mitochondrial complexes was referenced to complete depolarization by carbonyl cyanide m-chlorophenyl hydrazone. While inhibition of complexes I, III and IV effected rapid dissipation of ΔΨ , inhibition of complex II using 3-nitropropionic acid led to minimal depolarization of mitochondria. Nonetheless, all respiratory chain inhibitors triggered mitophagy as indicated by increased aggregation of mitochondrially localized PINK1. Mitophagy was further analyzed using a dual fluorescent protein biosensor reporting mitochondrial relocation to acidic lysosomal environment. Significant acidification of mitochondria was observed in neurons treated with rotenone or 3-nitropropionic acid, revealing mitophagy at distal processes. Neurons treated with antimycin A or cyanide failed to show mitochondrial acidification. Minor dissipation of ΔΨ by 3-nitropropionic acid coupled with vigorous triggering of mitophagy suggested depolarization of mitochondria is not a necessary condition to trigger mitophagy. Moreover, weak elicitation of mitophagy by antimycin A, subsequent to loss of ΔΨ , suggested that mitochondrial depolarization is not a sufficient condition for triggering robust neuronal mitophagy. Our findings provide new insight into complexities of mitophagic clearance of neuronal mitochondria.
受损线粒体对神经病理学的贡献激发了人们对线粒体自噬的兴趣。我们通过破坏原代神经元中线粒体能量代谢来研究神经元线粒体自噬的触发因素。在分别靶向复合物 I、II、III 和 IV 的药物鱼藤酮、3-硝基丙酸、抗霉素 A 和氰化钾抑制线粒体呼吸链后,在培养的鼠小脑颗粒细胞中检查了线粒体自噬。通过分析细胞活力、神经突损伤形态、质膜通透性和氧化磷酸化,确定产生细胞缓慢死亡的抑制剂浓度。用靶向线粒体复合物的药物对线粒体膜电位 (ΔΨ) 的耗散进行活细胞成像,并参考羰基氰化物 m-氯苯腙引起的完全去极化。虽然抑制复合物 I、III 和 IV 会迅速耗散 ΔΨ,但使用 3-硝基丙酸抑制复合物 II 会导致线粒体最小程度的去极化。尽管如此,所有呼吸链抑制剂都会触发线粒体自噬,这表明线粒体定位的 PINK1 聚集增加。使用报告线粒体向酸性溶酶体环境重新定位的双荧光蛋白生物传感器进一步分析线粒体自噬。在用鱼藤酮或 3-硝基丙酸处理的神经元中观察到线粒体显著酸化,揭示了在远端过程中的线粒体自噬。用抗霉素 A 或氰化物处理的神经元未显示线粒体酸化。3-硝基丙酸引起的 ΔΨ 轻微耗散与强烈的线粒体自噬触发相结合表明,线粒体去极化不是触发线粒体自噬的必要条件。此外,在 ΔΨ 丧失后,抗霉素 A 引起的线粒体自噬微弱提示线粒体去极化不是触发强烈神经元线粒体自噬的充分条件。我们的研究结果为神经元线粒体自噬清除的复杂性提供了新的见解。