Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia.
Nat Rev Microbiol. 2019 Apr;17(4):219-232. doi: 10.1038/s41579-018-0136-7. Epub 2019 Jan 21.
Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth's climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism. The key enzyme in this pathway, the methyl-coenzyme M reductase (Mcr) complex, catalyses the last step in methanogenesis and the first step in methanotrophy. The discovery of mcr and divergent mcr-like genes in new euryarchaeotal lineages and novel archaeal phyla challenges long-held views of the evolutionary origin of this metabolism within the Euryarchaeota. Divergent mcr-like genes have recently been shown to oxidize short-chain alkanes, indicating that these complexes have evolved to metabolize substrates other than methane. In this Review, we examine the diversity, metabolism and evolutionary history of mcr-containing archaea in light of these recent discoveries.
甲烷是全球碳循环中的一种关键化合物,它影响着营养物质循环和地球气候。少数微生物控制着生物产生的甲烷通量,包括产生或消耗甲烷的甲烷代谢古菌。属于广古菌门的产甲烷菌和甲烷营养菌共享一种遗传上相似的、相互关联的甲烷代谢途径。该途径中的关键酶是甲基辅酶 M 还原酶(Mcr)复合物,它催化产甲烷作用的最后一步和甲烷营养作用的第一步。在新的广古菌谱系和新的古菌门中发现的 mcr 和不同的 mcr 样基因,挑战了长期以来在广古菌门中对这种代谢进化起源的观点。最近发现,不同的 mcr 样基因能够氧化短链烷烃,这表明这些复合物已经进化为代谢除甲烷以外的底物。在这篇综述中,我们根据这些新发现,考察了含 mcr 的古菌的多样性、代谢和进化历史。