Woods Philip H, Speth Daan R, Laso-Pérez Rafael, Utter Daniel R, Ruff S Emil, Orphan Victoria J
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Sci Adv. 2025 Jun 20;11(25):eadq5232. doi: 10.1126/sciadv.adq5232.
Despite their large environmental impact and multiple independent emergences, the processes leading to the evolution of anaerobic methanotrophic archaea (ANME) remain unclear. This work uses comparative metagenomics of a recently evolved but understudied ANME group, " Methanovorans" (ANME-3), to identify evolutionary processes and innovations at work in ANME, which may be obscured in earlier evolved lineages. We identified horizontal transfer of homologs and convergent evolution in carbon and energy metabolic genes as potential early steps in evolution. We also identified the erosion of genes required for methylotrophic methanogenesis along with horizontal acquisition of multiheme cytochromes and other loci uniquely associated with ANME. The assembly and comparative analysis of multiple genomes offers important functional context for understanding the niche-defining metabolic differences between methane-oxidizing ANME and their methanogen relatives. Furthermore, this work illustrates the multiple evolutionary modes at play in the transition to a globally important metabolic niche.
尽管厌氧甲烷氧化古菌(ANME)对环境影响巨大且多次独立出现,但其进化过程仍不清楚。这项研究利用对一个最近进化但研究较少的ANME类群“Methanovorans”(ANME-3)进行比较宏基因组学分析,来确定在ANME中起作用的进化过程和创新,这些在早期进化的谱系中可能被掩盖。我们确定了同源物的水平转移以及碳和能量代谢基因的趋同进化是进化的潜在早期步骤。我们还发现甲基营养型产甲烷所需基因的侵蚀,以及多血红素细胞色素和其他与ANME独特相关的基因座的水平获得。多个基因组的组装和比较分析为理解甲烷氧化型ANME与其产甲烷菌亲属之间定义生态位的代谢差异提供了重要的功能背景。此外,这项研究说明了向一个全球重要的代谢生态位转变过程中发挥作用的多种进化模式。