Suppr超能文献

通过作物生物强化实现印度的营养安全:现状与未来展望。

Nutritional security through crop biofortification in India: Status & future prospects.

机构信息

Indian Council of Agricultural Research, Ministry of Agriculture & Farmers Welfare, Government of India, New Delhi, India.

出版信息

Indian J Med Res. 2018 Nov;148(5):621-631. doi: 10.4103/ijmr.IJMR_1893_18.

Abstract

Malnutrition has emerged as one of the most serious health issues worldwide. The consumption of unbalanced diet poor in nutritional quality causes malnutrition which is more prevalent in the underdeveloped and developing countries. Deficiency of proteins, essential amino acids, vitamins and minerals leads to poor health and increased susceptibility to various diseases, which in turn lead to significant loss in Gross Domestic Product and affect the socio-economic structure of the country. Although various avenues such as dietary-diversification, food-fortification and medical-supplementation are available, biofortification of crop varieties is considered as the most sustainable and cost-effective approach where the nutrients reach the target people in natural form. Here, we have discussed the present status on the development of biofortified crop varieties for various nutritional and antinutritional factors. Ongoing programmes of the Indian Council of Agricultural Research on the improvement of nutritional traits in different crops have been presented. Challenges and future prospects of crop biofortification in India have also been discussed. The newly developed biofortified crop varieties besides serving as an important source for livelihood to poor people assume great significance in nutritional security.

摘要

营养不良已成为全球最严重的健康问题之一。不均衡的饮食导致营养不良,这种情况在欠发达国家和发展中国家更为普遍,而这些饮食中缺乏营养质量高的蛋白质、必需氨基酸、维生素和矿物质,导致健康状况不佳,更容易患上各种疾病,这反过来又导致国内生产总值的显著损失,并影响国家的社会经济结构。虽然有多种途径,如饮食多样化、食物强化和医疗补充,但作物品种的生物强化被认为是最可持续和最具成本效益的方法,因为营养物质以自然形式到达目标人群。在这里,我们讨论了针对各种营养和抗营养因素开发生物强化作物品种的现状。介绍了印度农业研究理事会在不同作物营养特性改良方面的现行计划。还讨论了印度作物生物强化的挑战和未来前景。新开发的生物强化作物品种除了成为贫困人口重要的生计来源外,在营养安全方面也具有重要意义。

相似文献

1
Nutritional security through crop biofortification in India: Status & future prospects.
Indian J Med Res. 2018 Nov;148(5):621-631. doi: 10.4103/ijmr.IJMR_1893_18.
4
Ensuring Nutritional Security in India through Wheat Biofortification: A Review.
Genes (Basel). 2022 Dec 6;13(12):2298. doi: 10.3390/genes13122298.
5
Current Knowledge on Genetic Biofortification in Lentil.
J Agric Food Chem. 2016 Aug 24;64(33):6383-96. doi: 10.1021/acs.jafc.6b02171. Epub 2016 Aug 15.
6
Multiplying the efficiency and impact of biofortification through metabolic engineering.
Nat Commun. 2020 Oct 15;11(1):5203. doi: 10.1038/s41467-020-19020-4.
7
Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
World Rev Nutr Diet. 2018;118:112-122. doi: 10.1159/000484342. Epub 2018 Apr 13.
8
Biofortification in China: policy and practice.
Health Res Policy Syst. 2007 Sep 26;5:10. doi: 10.1186/1478-4505-5-10.
9
Breeding and adoption of biofortified crops and their nutritional impact on human health.
Ann N Y Acad Sci. 2023 Feb;1520(1):5-19. doi: 10.1111/nyas.14936. Epub 2022 Dec 7.
10
Metabolic engineering of micronutrients in crop plants.
Ann N Y Acad Sci. 2017 Feb;1390(1):59-73. doi: 10.1111/nyas.13274. Epub 2016 Nov 1.

引用本文的文献

1
Biofortification and fortification of wheat flour: Qualitative analysis for implementation and acceptance.
PLOS Glob Public Health. 2025 Feb 3;5(2):e0003619. doi: 10.1371/journal.pgph.0003619. eCollection 2025.
6
Biofortification: an approach to eradicate micronutrient deficiency.
Front Nutr. 2023 Sep 14;10:1233070. doi: 10.3389/fnut.2023.1233070. eCollection 2023.
7
Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS.
Mol Biol Rep. 2023 Nov;50(11):9191-9202. doi: 10.1007/s11033-023-08800-y. Epub 2023 Sep 30.
8
Soil micronutrients linked to human health in India.
Sci Rep. 2023 Aug 21;13(1):13591. doi: 10.1038/s41598-023-39084-8.
9
Enhancement of nutritional quality in maize kernel through marker-assisted breeding for vte4, crtRB1, and opaque2 genes.
J Appl Genet. 2023 Sep;64(3):431-443. doi: 10.1007/s13353-023-00768-6. Epub 2023 Jul 14.

本文引用的文献

3
Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
World Rev Nutr Diet. 2018;118:112-122. doi: 10.1159/000484342. Epub 2018 Apr 13.
4
Impact of biofortified maize consumption on serum carotenoid concentrations in Zambian children.
Eur J Clin Nutr. 2018 Feb;72(2):301-303. doi: 10.1038/s41430-017-0054-1. Epub 2018 Jan 10.
6
Provitamin A-biofortified maize consumption increases serum xanthophylls and C-natural abundance of retinol in Zambian children.
Exp Biol Med (Maywood). 2017 Sep;242(15):1508-1514. doi: 10.1177/1535370217728500. Epub 2017 Aug 24.
7
The research and implementation continuum of biofortified sweet potato and maize in Africa.
Ann N Y Acad Sci. 2017 Feb;1390(1):88-103. doi: 10.1111/nyas.13315. Epub 2017 Feb 10.
9
A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India.
J Nutr. 2015 Jul;145(7):1576-81. doi: 10.3945/jn.114.208009. Epub 2015 May 6.
10
Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele.
PLoS One. 2014 Dec 8;9(12):e113583. doi: 10.1371/journal.pone.0113583. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验