Suppr超能文献

丘脑皮质传入纤维在灵长类动物发育过程中比在啮齿类动物更早地支配皮质基板。

Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent.

机构信息

Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.

Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Cereb Cortex. 2019 Apr 1;29(4):1706-1718. doi: 10.1093/cercor/bhy327.

Abstract

The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.

摘要

目前的模型基于啮齿动物数据,提出丘脑皮质传入(TCA)在皮质神经发生末期支配基板。这意味着皮质神经元的层状身份是由内在指令决定的,而不是来自丘脑的信息。为了确定这种机制在灵长类动物中是否保守,我们检查了早期人类和猴子胎儿发育中丘脑皮质(TCA)和皮质传出传入的生长情况。在人类中,通过 secretagogin、calbindin 和 ROBO1 免疫反应性鉴定的 TCA,早在 7-7.5 PCW 时就可以在腹侧端脑的内囊中观察到,在 calretinin 免疫反应性皮质传出纤维之前通过皮层/基板边界(PSB)。此外,TCA 被观察到穿过中间区并支配背外侧皮质的基板前区,并且在 10-12 PCW 时 TCA 已经占据了大部分皮质。在狨猴中的等效阶段的观察结果证实,这种模式在灵长类动物中是保守的。因此,我们的结果表明,在灵长类动物中,TCA 比以前通过乙酰胆碱酯酶组织化学显示的更早地支配皮质基板前区,这表明先驱性丘脑传入可能有助于早期皮质回路的形成,从而参与定义皮质神经元表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d772/6418397/46feff79cb5f/bhy327f02.jpg

相似文献

3
Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1.
J Neurosci. 2002 Oct 1;22(19):8523-31. doi: 10.1523/JNEUROSCI.22-19-08523.2002.
5
The early development of thalamocortical and corticothalamic projections.
J Comp Neurol. 1993 Sep 1;335(1):16-41. doi: 10.1002/cne.903350103.
9
An Early Cortical Progenitor-Specific Mechanism Regulates Thalamocortical Innervation.
J Neurosci. 2021 Aug 11;41(32):6822-6835. doi: 10.1523/JNEUROSCI.0226-21.2021. Epub 2021 Jun 30.
10
Emergence of connectivity in the embryonic rat parietal cortex.
Cereb Cortex. 1992 Jul-Aug;2(4):336-52. doi: 10.1093/cercor/2.4.336.

引用本文的文献

1
Spatial transcriptomics reveals human cortical layer and area specification.
Nature. 2025 May 14. doi: 10.1038/s41586-025-09010-1.
3
Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei.
Front Neuroanat. 2025 Feb 7;19:1530236. doi: 10.3389/fnana.2025.1530236. eCollection 2025.
4
Artificial Intelligence: Fundamentals and Breakthrough Applications in Epilepsy.
Epilepsy Curr. 2024 Mar 31:15357597241238526. doi: 10.1177/15357597241238526.
6
A sensorimotor-association axis of thalamocortical connection development.
bioRxiv. 2024 Jun 14:2024.06.13.598749. doi: 10.1101/2024.06.13.598749.
7
Spatial Single-cell Analysis Decodes Cortical Layer and Area Specification.
bioRxiv. 2024 Jun 10:2024.06.05.597673. doi: 10.1101/2024.06.05.597673.
9
Functional genomics and systems biology in human neuroscience.
Nature. 2023 Nov;623(7986):274-282. doi: 10.1038/s41586-023-06686-1. Epub 2023 Nov 8.

本文引用的文献

1
The Combinatorial Creature: Cortical Phenotypes within and across Lifetimes.
Trends Neurosci. 2018 Oct;41(10):744-762. doi: 10.1016/j.tins.2018.08.002. Epub 2018 Sep 25.
2
Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall.
Brain Struct Funct. 2018 Dec;223(9):3919-3943. doi: 10.1007/s00429-018-1721-2. Epub 2018 Aug 9.
3
Developmental interactions between thalamus and cortex: a true love reciprocal story.
Curr Opin Neurobiol. 2018 Oct;52:33-41. doi: 10.1016/j.conb.2018.04.018. Epub 2018 Apr 25.
4
The logistics of afferent cortical specification in mice and men.
Semin Cell Dev Biol. 2018 Apr;76:112-119. doi: 10.1016/j.semcdb.2017.08.047. Epub 2017 Aug 31.
5
Charting the protomap of the human telencephalon.
Semin Cell Dev Biol. 2018 Apr;76:3-14. doi: 10.1016/j.semcdb.2017.08.033. Epub 2017 Aug 20.
6
Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain.
Front Neurosci. 2017 Apr 27;11:233. doi: 10.3389/fnins.2017.00233. eCollection 2017.
7
Prenatal thalamic waves regulate cortical area size prior to sensory processing.
Nat Commun. 2017 Feb 3;8:14172. doi: 10.1038/ncomms14172.
9
Secretagogin Is a Redox-Responsive Ca Sensor.
Biochemistry. 2017 Jan 17;56(2):411-420. doi: 10.1021/acs.biochem.6b00761. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验