Hanics János, Tretiakov Evgenii O, Romanov Roman A, Gáspárdy Anna, Hevesi Zsófia, Schnell Robert, Harkany Tibor, Alpár Alán
Department of Anatomy, Semmelweis University, Budapest, Hungary.
SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.
Acta Physiol (Oxf). 2025 May;241(5):e70031. doi: 10.1111/apha.70031.
Because of their stable expression, some EF-hand Ca-binding proteins are broadly used as histochemical markers of neurons in the nervous system. Secretagogin is a member of "neuron-specific" Ca-sensor proteins, yet variations in its expression due, chiefly, to neuronal activity remain ambiguous. We aimed to fill this gap of knowledge both in its use as a cell identity marker and for mechanistic analysis.
We mapped secretagogin distribution in human foetal forebrains. Then, Scgn-iCre::Ai9 mice in conjunction with single-cell RNA-seq were used to molecularly characterize cortical secretagogin-expressing neurons. Besides the in vitro manipulation of both SH-SY5Y neuroblastoma cells and primary cortical cultures from foetal mice, the activity dependence of secretagogin expression was also studied upon systemic kainate administration and dark rearing.
In the mammalian brain, including humans, both transient and stable secretagogin expression sites exist. In the cerebral cortex, we identified deep-layer pyramidal neurons with lifelong expression of secretagogin. Secretagogin expression was affected by neuronal activity: it was delayed in a cohort of human foetuses with Down's syndrome relative to age-matched controls. In mice, dark rearing reduced secretagogin expression in the superior colliculus, a midbrain structure whose development is dependent on topographic visual inputs. In contrast, excitation by both KCl exposure of SH-SY5Y cells and primary cortical neurons in vitro and through systemic kainate administration in mice increased secretagogin expression.
We suggest that secretagogin expression in neurons is developmentally regulated and activity dependent.
由于一些EF手型钙结合蛋白表达稳定,它们被广泛用作神经系统中神经元的组织化学标记物。分泌促胰岛素释放肽是“神经元特异性”钙传感器蛋白家族的一员,但其表达变化主要由于神经元活动导致的情况仍不明确。我们旨在填补在其作为细胞身份标记物的应用以及机制分析方面的这一知识空白。
我们绘制了分泌促胰岛素释放肽在人类胎儿前脑的分布图。然后,将Scgn-iCre::Ai9小鼠与单细胞RNA测序结合使用,以对表达皮质分泌促胰岛素释放肽的神经元进行分子特征分析。除了对SH-SY5Y神经母细胞瘤细胞和来自胎儿小鼠的原代皮质培养物进行体外操作外,还通过全身注射红藻氨酸盐和黑暗饲养研究了分泌促胰岛素释放肽表达的活性依赖性。
在包括人类在内的哺乳动物大脑中,存在瞬时和稳定的分泌促胰岛素释放肽表达位点。在大脑皮层中,我们鉴定出了终生表达分泌促胰岛素释放肽的深层锥体神经元。分泌促胰岛素释放肽的表达受神经元活动影响:相对于年龄匹配的对照组,患有唐氏综合征的人类胎儿群体中其表达延迟。在小鼠中,黑暗饲养降低了上丘中分泌促胰岛素释放肽的表达,上丘是一种中脑结构,其发育依赖于地形视觉输入。相比之下,体外SH-SY5Y细胞和原代皮质神经元暴露于氯化钾以及小鼠全身注射红藻氨酸盐引起的兴奋均增加了分泌促胰岛素释放肽的表达。
我们认为神经元中分泌促胰岛素释放肽的表达受发育调节且依赖于活性。