文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度卷积神经网络的无线胶囊内镜图像中糜烂和溃疡的自动检测。

Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.

机构信息

Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

AI Medical Service Inc., Tokyo, Japan.

出版信息

Gastrointest Endosc. 2019 Feb;89(2):357-363.e2. doi: 10.1016/j.gie.2018.10.027. Epub 2018 Oct 25.


DOI:10.1016/j.gie.2018.10.027
PMID:30670179
Abstract

BACKGROUND AND AIMS: Although erosions and ulcerations are the most common small-bowel abnormalities found on wireless capsule endoscopy (WCE), a computer-aided detection method has not been established. We aimed to develop an artificial intelligence system with deep learning to automatically detect erosions and ulcerations in WCE images. METHODS: We trained a deep convolutional neural network (CNN) system based on a Single Shot Multibox Detector, using 5360 WCE images of erosions and ulcerations. We assessed its performance by calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an independent test set of 10,440 small-bowel images including 440 images of erosions and ulcerations. RESULTS: The trained CNN required 233 seconds to evaluate 10,440 test images. The area under the curve for the detection of erosions and ulcerations was 0.958 (95% confidence interval [CI], 0.947-0.968). The sensitivity, specificity, and accuracy of the CNN were 88.2% (95% CI, 84.8%-91.0%), 90.9% (95% CI, 90.3%-91.4%), and 90.8% (95% CI, 90.2%-91.3%), respectively, at a cut-off value of 0.481 for the probability score. CONCLUSIONS: We developed and validated a new system based on CNN to automatically detect erosions and ulcerations in WCE images. This may be a crucial step in the development of daily-use diagnostic software for WCE images to help reduce oversights and the burden on physicians.

摘要

背景和目的:尽管在无线胶囊内镜(WCE)中发现的最常见的小肠异常是糜烂和溃疡,但尚未建立计算机辅助检测方法。我们旨在开发一种基于深度学习的人工智能系统,以自动检测 WCE 图像中的糜烂和溃疡。

方法:我们使用 5360 张糜烂和溃疡的 WCE 图像,基于单镜头多框检测器(Single Shot Multibox Detector)训练了一个深度卷积神经网络(CNN)系统。我们使用包括 440 张糜烂和溃疡图像的 10440 张小肠图像的独立测试集来计算接收者操作特征曲线下的面积,并计算其灵敏度、特异性和准确性,来评估该系统的性能。

结果:训练有素的 CNN 评估 10440 个测试图像需要 233 秒。检测糜烂和溃疡的曲线下面积为 0.958(95%置信区间[CI],0.947-0.968)。CNN 的灵敏度、特异性和准确性分别为 88.2%(95%CI,84.8%-91.0%)、90.9%(95%CI,90.3%-91.4%)和 90.8%(95%CI,90.2%-91.3%),概率评分的截断值为 0.481。

结论:我们开发并验证了一种基于 CNN 的新系统,用于自动检测 WCE 图像中的糜烂和溃疡。这可能是开发用于 WCE 图像的日常诊断软件的重要一步,有助于减少遗漏和医生的负担。

相似文献

[1]
Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2018-10-25

[2]
Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images.

Dig Endosc. 2020-3

[3]
Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2020-7

[4]
Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network.

J Gastroenterol Hepatol. 2019-12-27

[5]
Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images.

Phys Med Biol. 2018-8-10

[6]
Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software.

Gastrointest Endosc. 2014-11

[7]
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization.

Comput Math Methods Med. 2019-9-18

[8]
Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network.

Endoscopy. 2020-9

[9]
Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network.

Gastroenterol Res Pract. 2021-11-24

[10]
Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network.

Med Biol Eng Comput. 2022-3

引用本文的文献

[1]
Utilizing Deep Convolutional Neural Networks and Hybrid Classification for Gastrointestinal Disease Diagnosis from Capsule Endoscopy Images.

J Biomed Phys Eng. 2025-8-1

[2]
Digital biomarkers and artificial intelligence: a new frontier in personalized management of inflammatory bowel disease.

Front Immunol. 2025-8-4

[3]
Artificial Intelligence in Advancing Inflammatory Bowel Disease Management: Setting New Standards.

Cancers (Basel). 2025-7-14

[4]
Artificial intelligence in inflammatory bowel disease: innovations in diagnosis, monitoring, and personalized care.

Therap Adv Gastroenterol. 2025-7-23

[5]
Artificial Intelligence in Endoscopic and Ultrasound Imaging for Inflammatory Bowel Disease.

J Clin Med. 2025-6-16

[6]
Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy.

Diagnostics (Basel). 2025-4-25

[7]
Artificial Intelligence in Endoscopy: A Narrative Review.

Ulster Med J. 2025-4

[8]
Deep Learning Model for Histologic Diagnosis of Dysplastic Barrett's Esophagus: Multisite Cohort External Validation.

Am J Gastroenterol. 2025-4-23

[9]
Artificial Intelligence in Inflammatory Bowel Disease Endoscopy.

Diagnostics (Basel). 2025-4-1

[10]
Artificial Intelligence-Assisted Capsule Endoscopy Versus Conventional Capsule Endoscopy for Detection of Small Bowel Lesions: A Systematic Review and Meta-Analysis.

J Gastroenterol Hepatol. 2025-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索