Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
AI Medical Service Inc., Tokyo, Japan.
Gastrointest Endosc. 2019 Feb;89(2):357-363.e2. doi: 10.1016/j.gie.2018.10.027. Epub 2018 Oct 25.
BACKGROUND AND AIMS: Although erosions and ulcerations are the most common small-bowel abnormalities found on wireless capsule endoscopy (WCE), a computer-aided detection method has not been established. We aimed to develop an artificial intelligence system with deep learning to automatically detect erosions and ulcerations in WCE images. METHODS: We trained a deep convolutional neural network (CNN) system based on a Single Shot Multibox Detector, using 5360 WCE images of erosions and ulcerations. We assessed its performance by calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an independent test set of 10,440 small-bowel images including 440 images of erosions and ulcerations. RESULTS: The trained CNN required 233 seconds to evaluate 10,440 test images. The area under the curve for the detection of erosions and ulcerations was 0.958 (95% confidence interval [CI], 0.947-0.968). The sensitivity, specificity, and accuracy of the CNN were 88.2% (95% CI, 84.8%-91.0%), 90.9% (95% CI, 90.3%-91.4%), and 90.8% (95% CI, 90.2%-91.3%), respectively, at a cut-off value of 0.481 for the probability score. CONCLUSIONS: We developed and validated a new system based on CNN to automatically detect erosions and ulcerations in WCE images. This may be a crucial step in the development of daily-use diagnostic software for WCE images to help reduce oversights and the burden on physicians.
背景和目的:尽管在无线胶囊内镜(WCE)中发现的最常见的小肠异常是糜烂和溃疡,但尚未建立计算机辅助检测方法。我们旨在开发一种基于深度学习的人工智能系统,以自动检测 WCE 图像中的糜烂和溃疡。
方法:我们使用 5360 张糜烂和溃疡的 WCE 图像,基于单镜头多框检测器(Single Shot Multibox Detector)训练了一个深度卷积神经网络(CNN)系统。我们使用包括 440 张糜烂和溃疡图像的 10440 张小肠图像的独立测试集来计算接收者操作特征曲线下的面积,并计算其灵敏度、特异性和准确性,来评估该系统的性能。
结果:训练有素的 CNN 评估 10440 个测试图像需要 233 秒。检测糜烂和溃疡的曲线下面积为 0.958(95%置信区间[CI],0.947-0.968)。CNN 的灵敏度、特异性和准确性分别为 88.2%(95%CI,84.8%-91.0%)、90.9%(95%CI,90.3%-91.4%)和 90.8%(95%CI,90.2%-91.3%),概率评分的截断值为 0.481。
结论:我们开发并验证了一种基于 CNN 的新系统,用于自动检测 WCE 图像中的糜烂和溃疡。这可能是开发用于 WCE 图像的日常诊断软件的重要一步,有助于减少遗漏和医生的负担。
J Gastroenterol Hepatol. 2019-12-27
Comput Math Methods Med. 2019-9-18
Gastroenterol Res Pract. 2021-11-24
Med Biol Eng Comput. 2022-3
Cancers (Basel). 2025-7-14
Therap Adv Gastroenterol. 2025-7-23
Diagnostics (Basel). 2025-4-25
Ulster Med J. 2025-4
Diagnostics (Basel). 2025-4-1