Suppr超能文献

基于卷积神经网络的胶囊内镜图像中小肠钩虫的自动检测

Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network.

作者信息

Gan Tao, Yang Yulin, Liu Shuaicheng, Zeng Bing, Yang Jinlin, Deng Kai, Wu Junchao, Yang Li

机构信息

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 Sichuan, China.

出版信息

Gastroenterol Res Pract. 2021 Nov 24;2021:5682288. doi: 10.1155/2021/5682288. eCollection 2021.

Abstract

Ancylostomiasis is a fairly common small bowel parasite disease identified by capsule endoscopy (CE) for which a computer-aided clinical detection method has not been established. We sought to develop an artificial intelligence system with a convolutional neural network (CNN) to automatically detect hookworms in CE images. We trained a deep CNN system based on a YOLO-V4 (You Look Only Once-Version4) detector using 11236 CE images of hookworms. We assessed its performance by calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an independent test set of 10,529 small-bowel images including 531 images of hookworms. The trained CNN system required 403 seconds to evaluate 10,529 test images. The area under the curve for the detection of hookworms was 0.972 (95% confidence interval (CI), 0.967-0.978). The sensitivity, specificity, and accuracy of the CNN system were 92.2%, 91.1%, and 91.2%, respectively, at a probability score cut-off of 0.485. We developed and validated a CNN-based system for detecting hookworms in CE images. By combining this high-accuracy, high-speed, and oversight-preventing system with other CNN systems, we hope it will become an important supplement for detecting intestinal abnormalities in CE images. This trial is registered with ChiCTR2000034546 (a clinical research of artificial-intelligence-aided diagnosis for hookworms in small intestine by capsule endoscope images).

摘要

钩虫病是一种通过胶囊内镜(CE)识别的相当常见的小肠寄生虫病,目前尚未建立计算机辅助临床检测方法。我们试图开发一种基于卷积神经网络(CNN)的人工智能系统,以自动检测CE图像中的钩虫。我们使用11236张钩虫的CE图像,基于YOLO-V4(You Look Only Once-Version4)检测器训练了一个深度CNN系统。我们通过计算受试者操作特征曲线下面积,并使用包含531张钩虫图像的10529张小肠图像独立测试集来评估其性能,包括灵敏度、特异性和准确性。训练后的CNN系统评估10529张测试图像需要403秒。检测钩虫的曲线下面积为0.972(95%置信区间(CI),0.967-0.978)。在概率得分截止值为0.485时,CNN系统的灵敏度、特异性和准确性分别为92.2%、91.1%和91.2%。我们开发并验证了一种基于CNN的系统,用于检测CE图像中的钩虫。通过将这种高精度、高速且能防止疏忽的系统与其他CNN系统相结合,我们希望它将成为检测CE图像中肠道异常的重要补充。本试验已在ChiCTR2000034546注册(一项通过胶囊内镜图像对小肠钩虫进行人工智能辅助诊断的临床研究)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d337/8635910/6064a1ed8201/GRP2021-5682288.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验