Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
AI Medical Service Inc., Tokyo, Japan.
J Gastroenterol Hepatol. 2020 Jul;35(7):1196-1200. doi: 10.1111/jgh.14941. Epub 2019 Dec 27.
BACKGROUND AND AIM: Detecting blood content in the gastrointestinal tract is one of the crucial applications of capsule endoscopy (CE). The suspected blood indicator (SBI) is a conventional tool used to automatically tag images depicting possible bleeding in the reading system. We aim to develop a deep learning-based system to detect blood content in images and compare its performance with that of the SBI. METHODS: We trained a deep convolutional neural network (CNN) system, using 27 847 CE images (6503 images depicting blood content from 29 patients and 21 344 images of normal mucosa from 12 patients). We assessed its performance by calculating the area under the receiver operating characteristic curve (ROC-AUC) and its sensitivity, specificity, and accuracy, using an independent test set of 10 208 small-bowel images (208 images depicting blood content and 10 000 images of normal mucosa). The performance of the CNN was compared with that of the SBI, in individual image analysis, using the same test set. RESULTS: The AUC for the detection of blood content was 0.9998. The sensitivity, specificity, and accuracy of the CNN were 96.63%, 99.96%, and 99.89%, respectively, at a cut-off value of 0.5 for the probability score, which were significantly higher than those of the SBI (76.92%, 99.82%, and 99.35%, respectively). The trained CNN required 250 s to evaluate 10 208 test images. CONCLUSIONS: We developed and tested the CNN-based detection system for blood content in CE images. This system has the potential to outperform the SBI system, and the patient-level analyses on larger studies are required.
背景与目的:检测胃肠道内的血液含量是胶囊内镜(CE)的关键应用之一。可疑血液指标(SBI)是一种用于在阅读系统中自动标记可能出血图像的传统工具。我们旨在开发一种基于深度学习的系统来检测图像中的血液含量,并比较其与 SBI 的性能。
方法:我们使用 27847 个 CE 图像(29 名患者的 6503 张图像显示血液内容,12 名患者的 21344 张正常黏膜图像)来训练深度卷积神经网络(CNN)系统。我们使用一个独立的 10208 小肠图像测试集(208 张显示血液内容的图像和 10000 张正常黏膜图像)来计算接收者操作特征曲线(ROC-AUC)下的面积及其敏感性、特异性和准确性,评估其性能。我们将 CNN 的性能与相同测试集的 SBI 进行个体图像分析比较。
结果:检测血液含量的 AUC 为 0.9998。CNN 的敏感性、特异性和准确性分别为 96.63%、99.96%和 99.89%,概率评分的截断值为 0.5,明显高于 SBI(分别为 76.92%、99.82%和 99.35%)。训练好的 CNN 评估 10208 个测试图像需要 250 秒。
结论:我们开发并测试了基于 CNN 的 CE 图像血液含量检测系统。该系统有可能优于 SBI 系统,需要在更大的研究中进行患者水平的分析。
J Gastroenterol Hepatol. 2019-12-27
Med Biol Eng Comput. 2022-3
Comput Math Methods Med. 2019-9-18
Gastroenterol Res Pract. 2021-11-24
Bioengineering (Basel). 2025-6-4
World J Gastroenterol. 2025-6-7
Mater Today Bio. 2024-10-9
J Community Hosp Intern Med Perspect. 2024-5-7
Diagnostics (Basel). 2024-1-29
World J Gastroenterol. 2024-1-14