文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度卷积神经网络的胶囊内镜图像中血液内容的自动检测。

Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network.

机构信息

Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

AI Medical Service Inc., Tokyo, Japan.

出版信息

J Gastroenterol Hepatol. 2020 Jul;35(7):1196-1200. doi: 10.1111/jgh.14941. Epub 2019 Dec 27.


DOI:10.1111/jgh.14941
PMID:31758717
Abstract

BACKGROUND AND AIM: Detecting blood content in the gastrointestinal tract is one of the crucial applications of capsule endoscopy (CE). The suspected blood indicator (SBI) is a conventional tool used to automatically tag images depicting possible bleeding in the reading system. We aim to develop a deep learning-based system to detect blood content in images and compare its performance with that of the SBI. METHODS: We trained a deep convolutional neural network (CNN) system, using 27 847 CE images (6503 images depicting blood content from 29 patients and 21 344 images of normal mucosa from 12 patients). We assessed its performance by calculating the area under the receiver operating characteristic curve (ROC-AUC) and its sensitivity, specificity, and accuracy, using an independent test set of 10 208 small-bowel images (208 images depicting blood content and 10 000 images of normal mucosa). The performance of the CNN was compared with that of the SBI, in individual image analysis, using the same test set. RESULTS: The AUC for the detection of blood content was 0.9998. The sensitivity, specificity, and accuracy of the CNN were 96.63%, 99.96%, and 99.89%, respectively, at a cut-off value of 0.5 for the probability score, which were significantly higher than those of the SBI (76.92%, 99.82%, and 99.35%, respectively). The trained CNN required 250 s to evaluate 10 208 test images. CONCLUSIONS: We developed and tested the CNN-based detection system for blood content in CE images. This system has the potential to outperform the SBI system, and the patient-level analyses on larger studies are required.

摘要

背景与目的:检测胃肠道内的血液含量是胶囊内镜(CE)的关键应用之一。可疑血液指标(SBI)是一种用于在阅读系统中自动标记可能出血图像的传统工具。我们旨在开发一种基于深度学习的系统来检测图像中的血液含量,并比较其与 SBI 的性能。

方法:我们使用 27847 个 CE 图像(29 名患者的 6503 张图像显示血液内容,12 名患者的 21344 张正常黏膜图像)来训练深度卷积神经网络(CNN)系统。我们使用一个独立的 10208 小肠图像测试集(208 张显示血液内容的图像和 10000 张正常黏膜图像)来计算接收者操作特征曲线(ROC-AUC)下的面积及其敏感性、特异性和准确性,评估其性能。我们将 CNN 的性能与相同测试集的 SBI 进行个体图像分析比较。

结果:检测血液含量的 AUC 为 0.9998。CNN 的敏感性、特异性和准确性分别为 96.63%、99.96%和 99.89%,概率评分的截断值为 0.5,明显高于 SBI(分别为 76.92%、99.82%和 99.35%)。训练好的 CNN 评估 10208 个测试图像需要 250 秒。

结论:我们开发并测试了基于 CNN 的 CE 图像血液含量检测系统。该系统有可能优于 SBI 系统,需要在更大的研究中进行患者水平的分析。

相似文献

[1]
Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network.

J Gastroenterol Hepatol. 2019-12-27

[2]
Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images.

Dig Endosc. 2020-3

[3]
Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2020-7

[4]
Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2018-10-25

[5]
Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model.

Gastroenterology. 2019-6-25

[6]
Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study.

Gastrointest Endosc. 2021-1

[7]
Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network.

BMJ Open Gastroenterol. 2021-9

[8]
Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network.

Med Biol Eng Comput. 2022-3

[9]
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization.

Comput Math Methods Med. 2019-9-18

[10]
Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network.

Gastroenterol Res Pract. 2021-11-24

引用本文的文献

[1]
Capsule Endoscopy: Current Trends, Technological Advancements, and Future Perspectives in Gastrointestinal Diagnostics.

Bioengineering (Basel). 2025-6-4

[2]
Classification of pediatric video capsule endoscopy images for small bowel abnormalities using deep learning models.

World J Gastroenterol. 2025-6-7

[3]
Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases.

Mater Today Bio. 2024-10-9

[4]
Deep Learning for Automatic Identification and Characterization of the Bleeding Potential of Enteric Protruding Lesions in Capsule Endoscopy.

Gastro Hep Adv. 2022-4-18

[5]
Role of Artificial Intelligence in Endoscopic Intervention: A Clinical Review.

J Community Hosp Intern Med Perspect. 2024-5-7

[6]
Development and validation of a deep learning system for detection of small bowel pathologies in capsule endoscopy: a pilot study in a Singapore institution.

Singapore Med J. 2024-3-1

[7]
From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy?

Diagnostics (Basel). 2024-1-29

[8]
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models.

World J Gastroenterol. 2024-1-14

[9]
A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

BMC Gastroenterol. 2024-1-2

[10]
The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights.

Cancers (Basel). 2023-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索