Suppr超能文献

在突触发生过程中谷氨酰胺合成酶活性不足会导致成年小鼠出现空间记忆障碍。

Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice.

机构信息

Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, Jinju, Republic of Korea.

Department of Physiology, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju, Republic of Korea.

出版信息

Sci Rep. 2019 Jan 22;9(1):252. doi: 10.1038/s41598-018-36619-2.

Abstract

Glutamatergic synapses constitute a major excitatory neurotransmission system and are regulated by glutamate/glutamine (Gln) cycling between neurons and astrocytes. Gln synthetase (GS) produced by astrocytes plays an important role in maintaining the cycle. However, the significance of GS during synaptogenesis has not been clarified. GS activity and expression significantly increase from postnatal day (PD) 7 to 21, and GS is expressed prior to glial fibrillary acidic protein (GFAP) and is more abundant than GFAP throughout synaptogenesis. These observations suggest that GS plays an important role in synaptogenesis. We investigated this by inhibiting GS activity in neonatal mice and assessed the consequences in adult animals. Lower expression levels of GS and GFAP were found in the CA3 region of the hippocampus but not in the CA1 region. Moreover, synaptic puncta and glutamatergic neurotransmission were also decreased in CA3. Behaviorally, mice with inhibited GS during synaptogenesis showed spatial memory-related impairment as adults. These results suggest that postnatal GS activity is important for glutamatergic synapse development in CA3.

摘要

谷氨酸能突触构成了主要的兴奋性神经递质系统,并受到神经元和星形胶质细胞之间谷氨酸/谷氨酰胺(Gln)循环的调节。星形胶质细胞产生的谷氨酰胺合成酶(GS)在维持循环中起着重要作用。然而,GS 在突触发生过程中的意义尚不清楚。GS 活性和表达从出生后第 7 天到 21 天显著增加,并且 GS 的表达先于神经胶质纤维酸性蛋白(GFAP),并且在整个突触发生过程中比 GFAP 更为丰富。这些观察结果表明 GS 在突触发生中起着重要作用。我们通过抑制新生小鼠的 GS 活性来研究这一点,并评估成年动物的后果。在海马体的 CA3 区而不是 CA1 区发现 GS 和 GFAP 的表达水平降低。此外,CA3 中的突触小体和谷氨酸能神经传递也减少。行为上,在突触发生过程中抑制 GS 的小鼠在成年时表现出与空间记忆相关的损伤。这些结果表明,出生后 GS 活性对于 CA3 中的谷氨酸能突触发育很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f5/6342969/ae108af4abb2/41598_2018_36619_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验