Suppr超能文献

一种用于 CO 生物固定和生物量生产的微藻 UV 突变体的特性研究。

Characterization of a Microalgal UV Mutant for CO Biofixation and Biomass Production.

机构信息

School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.

Shandong Provincial Engineering Centre on Environmental Science and Technology, Jinan 250061, China.

出版信息

Biomed Res Int. 2018 Dec 23;2018:4375170. doi: 10.1155/2018/4375170. eCollection 2018.

Abstract

The mutagenesis is an emerging strategy for screening microalgal candidates for CO biofixation and biomass production. In this study, by 96-well microplates-UV mutagenesis, a mutant stemmed from was screened and named as SDEC-1M. To characterize SDEC-1M, it was cultivated under air and high level CO (15% v/v), and its parental strain (PS) was considered as control. Growth characterizations showed that SDEC-1M grew best in high level CO. It indicated that the mutant had high CO tolerance (HCT) and growth potential under high level CO. Richer total carbohydrate content (37.26%) and lipid content (24.80%) demonstrated that, compared to its parental strain, SDEC-1M was apt to synthesize energy storage materials, especially under high CO level. Meanwhile, the highest light conversion efficiency (approximately 18 %) was also obtained. Thus, the highest overall biomass productivities were achieved in SDEC-1M under high level CO, largely attributed to that the highest productivities of total lipid, total carbohydrate, and crude protein were also achieved in the meantime. By modified UV, therefore, mutagenized SDEC-1M was the better candidate for CO biofixation and biofuel production than its parental strain.

摘要

诱变是筛选用于 CO 固定和生物质生产的微藻候选物的新兴策略。在这项研究中,通过 96 孔微量板-UV 诱变,筛选出一株源自 的突变体,并将其命名为 SDEC-1M。为了表征 SDEC-1M,在空气和高浓度 CO(15% v/v)下培养,并将其亲本株(PS)作为对照。生长特性表明,SDEC-1M 在高浓度 CO 下生长最好。这表明突变体具有高 CO 耐受性(HCT)和在高浓度 CO 下的生长潜力。更丰富的总碳水化合物含量(37.26%)和脂质含量(24.80%)表明,与亲本株相比,SDEC-1M 更易于合成储能物质,尤其是在高 CO 水平下。同时,还获得了最高的光转化效率(约 18%)。因此,在高浓度 CO 下,SDEC-1M 实现了最高的总生物质生产力,这主要归因于同时获得了最高的总脂质、总碳水化合物和粗蛋白生产力。因此,通过改良的 UV,突变体 SDEC-1M 比其亲本株更适合 CO 固定和生物燃料生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d12/6323505/564aa4420d1d/BMRI2018-4375170.001.jpg

相似文献

1
Characterization of a Microalgal UV Mutant for CO Biofixation and Biomass Production.
Biomed Res Int. 2018 Dec 23;2018:4375170. doi: 10.1155/2018/4375170. eCollection 2018.
2
Biomass and lipid accumulation of three new screened microalgae with high concentration of carbon dioxide and nitric oxide.
Environ Technol. 2015;36(18):2278-84. doi: 10.1080/09593330.2015.1026286. Epub 2015 Apr 1.
3
Carbon dioxide (CO) biofixation by microalgae and its potential for biorefinery and biofuel production.
Sci Total Environ. 2017 Apr 15;584-585:1121-1129. doi: 10.1016/j.scitotenv.2017.01.172. Epub 2017 Feb 4.
5
Effect of flue gas CO on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production.
Environ Technol. 2017 Aug;38(16):2085-2092. doi: 10.1080/09593330.2016.1246145. Epub 2016 Oct 31.
6
8
Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain ABC-009.
J Microbiol Biotechnol. 2022 Mar 28;32(3):378-386. doi: 10.4014/jmb.2108.08021.
9
Coupled microalgal cultivation with the treatment of domestic sewage and high-level CO.
Environ Technol. 2018 Jun;39(11):1422-1429. doi: 10.1080/09593330.2017.1330901. Epub 2017 May 27.
10
Effects of different concentrations of CO on Scenedesmus obliquus to overcome sludge extract toxicity and accumulate biomass.
Chemosphere. 2022 Oct;305:135514. doi: 10.1016/j.chemosphere.2022.135514. Epub 2022 Jul 4.

引用本文的文献

1
Nutritional and Amino Acid Composition of Scenedesmus sp. Cultivated Under Various Light Intensities.
Curr Microbiol. 2025 May 2;82(6):274. doi: 10.1007/s00284-025-04248-4.
2
Enhancement of non-oleaginous green microalgae Ulothrix for bio-fixing CO and producing biofuels by ARTP mutagenesis.
Biotechnol Biofuels Bioprod. 2024 Nov 13;17(1):135. doi: 10.1186/s13068-024-02577-3.
3
Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review.
Front Bioeng Biotechnol. 2023 Jan 13;10:1104914. doi: 10.3389/fbioe.2022.1104914. eCollection 2022.

本文引用的文献

2
Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium.
Bioprocess Biosyst Eng. 2017 Aug;40(8):1197-1207. doi: 10.1007/s00449-017-1780-4. Epub 2017 May 25.
3
Effect of CO Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.
Appl Biochem Biotechnol. 2017 May;182(1):335-348. doi: 10.1007/s12010-016-2330-2. Epub 2016 Nov 23.
4
Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock.
Biomed Res Int. 2016;2016:8792548. doi: 10.1155/2016/8792548. Epub 2016 Sep 20.
5
Microalgae as sustainable renewable energy feedstock for biofuel production.
Biomed Res Int. 2015;2015:519513. doi: 10.1155/2015/519513. Epub 2015 Mar 22.
7
Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories.
J Biotechnol. 2015 May 10;201:28-42. doi: 10.1016/j.jbiotec.2014.08.021. Epub 2014 Aug 24.
8
Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool.
Appl Microbiol Biotechnol. 2014 Jun;98(12):5387-96. doi: 10.1007/s00253-014-5755-y. Epub 2014 Apr 27.
9
The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris.
Appl Microbiol Biotechnol. 2014 Mar;98(5):2345-56. doi: 10.1007/s00253-013-5442-4. Epub 2014 Jan 12.
10
Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4.
Bioresour Technol. 2014;152:247-52. doi: 10.1016/j.biortech.2013.11.009. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验