Aldrich Thomas J, Matta Micaela, Zhu Weigang, Swick Steven M, Stern Charlotte L, Schatz George C, Facchetti Antonio, Melkonyan Ferdinand S, Marks Tobin J
Flexterra Corporation , 8025 Lamon Avenue , Skokie , Illinois 60077 , United States.
J Am Chem Soc. 2019 Feb 20;141(7):3274-3287. doi: 10.1021/jacs.8b13653. Epub 2019 Feb 7.
Indacenodithienothiophene (IDTT)-based postfullerene electron acceptors, such as ITIC (2,2'-[[6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3- d:2',3'- d']-s-indaceno[1,2- b:5,6- b']dithiophene-2,8-diyl]-bis[methylidyne(3-oxo-1 H-indene-2,1(3 H)-diylidene)]]bis[propanedinitrile]), have become synonymous with high power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) polymer solar cells (PSCs). Here we systematically investigate the influence of end-group fluorination density and positioning on the physicochemical properties, single-crystal packing, end-group redistribution propensity, and BHJ photovoltaic performance of a series of ITIC variants, ITIC- nF ( n = 0, 2, 3, 4, and 6). Increasing n from 0 → 6 contracts the optical bandgap, but only marginally lowers the LUMO for n > 4. This yields enhanced photovoltaic short-circuit current density and good open-circuit voltage, so that ITIC-6F achieves the highest PCE of the series, approaching 12% in blends with the PBDB-TF donor polymer. Single-crystal diffraction reveals that the ITIC- nF molecules cofacially interleave with ITIC-6F having the shortest π-π distance of 3.28 Å. This feature together with ZINDO-level computed intermolecular electronic coupling integrals as high as 57 meV, and B3LYP/DZP-level reorganization energies as low as 147 meV, rival or surpass the corresponding values for fullerenes, ITIC-0F, and ITIC-4F, and track a positive correlation between the ITIC- nF space-charge limited electron mobility and n. Finally, a heretofore unrecognized solution-phase redistribution process between the 2-(3-oxo-indan-1-ylidene)-malononitrile-derived end-groups (EGs) of IDTT-based NFAs, i.e., EG-IDTT-EG + EG-IDTT-EG ⇌ 2 EG-IDTT-EG, with implications for the entire ITIC PSC field, is identified and mechanistically characterized, and the effects on PSC performance are assessed.
基于茚并二噻吩并噻吩(IDTT)的后富勒烯电子受体,如ITIC(2,2'-[[6,6,12,12-四(4-己基苯基)-6,12-二氢二噻吩并[2,3-d:2',3'-d']-s-茚并[1,2-b:5,6-b']二噻吩-2,8-二基]-双[亚甲基(3-氧代-1H-茚-2,1(3H)-二亚基)]]双[丙二腈]),已成为体异质结(BHJ)聚合物太阳能电池(PSC)中高功率转换效率(PCE)的代名词。在此,我们系统地研究了端基氟化密度和位置对一系列ITIC变体ITIC-nF(n = 0、2、3、4和6)的物理化学性质、单晶堆积、端基重新分布倾向以及BHJ光伏性能的影响。将n从0增加到6会使光学带隙收缩,但对于n > 4时,仅略微降低最低未占分子轨道(LUMO)。这导致光伏短路电流密度增强且开路电压良好,因此ITIC-6F在与PBDB-TF供体聚合物的共混物中实现了该系列中的最高PCE,接近12%。单晶衍射表明,ITIC-nF分子共面交错排列,ITIC-6F的最短π-π距离为3.28 Å。这一特征与高达57 meV的ZINDO水平计算的分子间电子耦合积分以及低至147 meV的B3LYP/DZP水平重组能一起,与富勒烯、ITIC-0F和ITIC-4F的相应值相当或超过这些值,并追踪了ITIC-nF空间电荷限制电子迁移率与n之间的正相关关系。最后,我们确定并从机理上表征了基于IDTT的非富勒烯受体(NFA)的2-(3-氧代茚-1-亚基)-丙二腈衍生端基(EG)之间一种此前未被认识的溶液相重新分布过程,即EG-IDTT-EG + EG-IDTT-EG ⇌ 2 EG-IDTT-EG,该过程对整个ITIC PSC领域具有重要意义,并评估了其对PSC性能的影响。