Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.
Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom.
Cancer Res. 2019 Mar 1;79(5):905-917. doi: 10.1158/0008-5472.CAN-18-1261. Epub 2019 Jan 23.
Medulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using () transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified -driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with activation. This represents the first genetically induced mouse model of CNS-PNET and a rare model of group 3 and 4 medulloblastoma. We identified several putative proto-oncogenes including , and . Genetic manipulation of these genes demonstrated a robust impact on tumorigenesis and . We also determined that FOXR2 interacts with N-MYC, increases C-MYC protein stability, and activates FAK/SRC signaling. Altogether, our study identified several promising therapeutic targets in medulloblastoma and CNS-PNET. SIGNIFICANCE: A transposon-induced mouse model identifies several novel genetic drivers and potential therapeutic targets in medulloblastoma and CNS-PNET.
髓母细胞瘤和中枢神经系统原始神经外胚层肿瘤(CNS-PNET)是具有侵袭性、低分化的脑肿瘤,其有效治疗方法有限。我们使用 () 转座子诱变技术,鉴定了髓母细胞瘤和 CNS-PNET 的新的遗传驱动因素。跨物种基因表达分析将 - 驱动的肿瘤分为不同的髓母细胞瘤和 CNS-PNET 亚组,表明它们类似于人类 Sonic hedgehog 和 3 组和 4 组髓母细胞瘤和 CNS 神经母细胞瘤,具有 激活。这代表了首个遗传诱导的 CNS-PNET 小鼠模型,也是 3 组和 4 组髓母细胞瘤的罕见模型。我们鉴定了几个推定的原癌基因,包括 、 和 。这些基因的遗传操作表明它们对肿瘤发生有很强的影响 。我们还确定了 FOXR2 与 N-MYC 相互作用,增加 C-MYC 蛋白稳定性,并激活 FAK/SRC 信号。总之,我们的研究在髓母细胞瘤和 CNS-PNET 中鉴定了几个有前途的治疗靶点。
转座子诱导的小鼠模型在髓母细胞瘤和 CNS-PNET 中鉴定了几个新的遗传驱动因素和潜在的治疗靶点。