文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Temperature-Responsive Hydrogel-Coated Gold Nanoshells.

作者信息

Park Hye Hun, Srisombat La-Ongnuan, Jamison Andrew C, Liu Tingting, Marquez Maria D, Park Hansoo, Lee Sungbae, Lee Tai-Chou, Lee T Randall

机构信息

Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5003, USA.

School of Integrative Engineering, Chung-Ang University, Seoul 156-756, Korea.

出版信息

Gels. 2018 Mar 26;4(2):28. doi: 10.3390/gels4020028.


DOI:10.3390/gels4020028
PMID:30674804
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6209258/
Abstract

Gold nanoshells (~160 nm in diameter) were encapsulated within a shell of temperature-responsive poly(-isopropylacrylamide--acrylic acid) (P(NIPAM--AA)) using a surface-bound rationally-designed free radical initiator in water for the development of a photothermally-induced drug-delivery system. The morphologies of the resultant hydrogel-coated nanoshells were analyzed by scanning electron microscopy (SEM), while the temperature-responsive behavior of the nanoparticles was characterized by dynamic light scattering (DLS). The diameter of the P(NIPAM--AA) encapsulated nanoshells decreased as the solution temperature was increased, indicating a collapse of the hydrogel layer with increasing temperatures. In addition, the optical properties of the composite nanoshells were studied by UV-visible spectroscopy. The surface plasmon resonance (SPR) peak of the hydrogel-coated nanoshells appeared at ~800 nm, which lies within the tissue-transparent range that is important for biomedical applications. Furthermore, the periphery of the particles was conjugated with the model protein avidin to modify the hydrogel-coated nanoshells with a fluorescent-tagged biotin, biotin-4-fluorescein (biotin-4-FITC), for colorimetric imaging/monitoring.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/911ed257aef2/gels-04-00028-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/ffce63c05000/gels-04-00028-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/a5d46ee7984e/gels-04-00028-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/0510b90bf6f1/gels-04-00028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/1381c0e51c3b/gels-04-00028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/2017f1f0c617/gels-04-00028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/80cd0937bf9e/gels-04-00028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/4e835e868346/gels-04-00028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/cc4ee43ee187/gels-04-00028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/911ed257aef2/gels-04-00028-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/ffce63c05000/gels-04-00028-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/a5d46ee7984e/gels-04-00028-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/0510b90bf6f1/gels-04-00028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/1381c0e51c3b/gels-04-00028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/2017f1f0c617/gels-04-00028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/80cd0937bf9e/gels-04-00028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/4e835e868346/gels-04-00028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/cc4ee43ee187/gels-04-00028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/6209258/911ed257aef2/gels-04-00028-g007.jpg

相似文献

[1]
Temperature-Responsive Hydrogel-Coated Gold Nanoshells.

Gels. 2018-3-26

[2]
Hydrogel-Encapsulated Mesoporous Silica-Coated Gold Nanoshells for Smart Drug Delivery.

Int J Mol Sci. 2019-7-12

[3]
Hydrogel-Coated Near Infrared Absorbing Nanoshells as Light-Responsive Drug Delivery Vehicles.

ACS Biomater Sci Eng. 2015-8-10

[4]
Porous silver-coated pNIPAM--AAc hydrogel nanocapsules.

Beilstein J Nanotechnol. 2019-10-4

[5]
Synthesis of Gold Nanoflowers Encapsulated with Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels.

J Nanosci Nanotechnol. 2015-10

[6]
In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

ACS Appl Mater Interfaces. 2014-11-11

[7]
Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery.

J Control Release. 2014-1-23

[8]
Shedding light on the growth of gold nanoshells.

ACS Nano. 2014-2-25

[9]
Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites.

Langmuir. 2007-6-5

[10]
Near-Infrared Responsive Gold-Layersome Nanoshells.

Langmuir. 2017-5-19

引用本文的文献

[1]
Classification, synthesis, characterization, and applications of metal nanoparticle-containing hybrid microgels: a comprehensive review.

RSC Adv. 2024-8-6

[2]
A review on Ag nanoparticles fabricated in microgels.

RSC Adv. 2024-6-17

[3]
Development and Characterization of Terbinafine-Loaded Nanoemulgel for Effective Management of Dermatophytosis.

Gels. 2023-11-12

[4]
Functional Aerogels Composed of Regenerated Cellulose and Tungsten Oxide for UV Detection and Seawater Desalination.

Gels. 2022-12-25

[5]
Photothermal nanohybrid hydrogels for biomedical applications.

Front Bioeng Biotechnol. 2022-11-3

[6]
Complete life of cobalt nanoparticles loaded into cross-linked organic polymers: a review.

RSC Adv. 2022-5-20

[7]
Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment.

Front Chem. 2021-1-20

[8]
Porous silver-coated pNIPAM--AAc hydrogel nanocapsules.

Beilstein J Nanotechnol. 2019-10-4

[9]
Hydrogel-Encapsulated Mesoporous Silica-Coated Gold Nanoshells for Smart Drug Delivery.

Int J Mol Sci. 2019-7-12

[10]
Synthetic Methodologies to Gold Nanoshells: An Overview.

Molecules. 2018-11-2

本文引用的文献

[1]
Silver-Free Gold Nanocages with Near-Infrared Extinctions.

ACS Omega. 2016-9-21

[2]
Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.

ACS Appl Mater Interfaces. 2017-4-6

[3]
Aptazyme-Gold Nanoparticle Sensor for Amplified Molecular Probing in Living Cells.

Anal Chem. 2016-5-17

[4]
Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy.

ACS Appl Mater Interfaces. 2016-4-20

[5]
Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis.

ACS Appl Mater Interfaces. 2015-2-9

[6]
In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

ACS Appl Mater Interfaces. 2014-11-11

[7]
Engineered nanoparticles for drug delivery in cancer therapy.

Angew Chem Int Ed Engl. 2014-10-7

[8]
Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery.

ACS Nano. 2014-3-25

[9]
Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions.

Nanoscale. 2012-12-12

[10]
Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared.

ACS Appl Mater Interfaces. 2011-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索