Translational Imaging Center, Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
Laboratory of Theoretical and Applied Mechanics (LMTA), Department of Mechanical Engineering, Universidade Federal Fluminense, Niterói, Brazil.
Nat Protoc. 2019 Feb;14(2):616-638. doi: 10.1038/s41596-018-0111-9.
Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour.
蛋白质二聚体和寡聚化对于大多数细胞功能至关重要,但在活细胞中测量这些寡聚体的大小,特别是当它们的大小随时间和空间变化时,仍然是一个挑战。一种常用于研究细胞中蛋白质聚集体的方法是数量和亮度(N&B),这是一种荧光显微镜方法,能够测量一系列荧光显微镜图像中每个像素中分子的表观平均数量及其寡聚化(亮度)。我们最近扩展了这种方法,以便能够对原始数据进行重采样,以解决每个像素中共存物种的统计权重问题。这一特性使得增强 N&B(eN&B)在捕获蛋白质寡聚化的时间方面非常理想,当寡聚体的分布随时间向更大的中心大小移动时。在本方案中,我们通过使用基于电子倍增电荷耦合器件(EMCCD)的全内反射显微镜(TIRF)成像来量化受体聚类动力学,展示了 eN&B 的应用。TIRF 提供了更高的信噪比,但我们也为在共聚焦显微镜中实施 eN&B 提供了指导。对于每个时间点,eN&B 需要采集 200 帧,完成单个时间点需要几秒钟到 2 分钟。我们提供了一个适用于任何标准共聚焦或 TIRF 显微镜的 eN&B(和标准 N&B)MATLAB 软件包。该软件需要一台高内存计算机(64 Gb)才能运行,并包括一个光漂白去趋势算法,允许将活细胞成像延长一个多小时。