Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong, Gyeonggi-do, 18450, Republic of Korea.
Business Information Team, Ilsong Educational Foundation, Hallym University Medical Center, Seoul, Republic of Korea.
Neurol Sci. 2019 Apr;40(4):793-800. doi: 10.1007/s10072-019-3730-1. Epub 2019 Jan 24.
Postoperative delirium (POD) in older adults is a very serious complication. Due to the complexity of too many risk factors (RFs), an overall assessment of RFs may be needed. The aim of this study was to evaluate comprehensively the RFs of POD regardless of the organ undergoing operation, efficiently incorporating the concept of comprehensive big data using a smart clinical data warehouse (CDW).
We reviewed the electronic medical data of inpatients aged 65 years or older who underwent major surgery between January 2010 and June 2016 at Hallym University Sacred Heart Hospital. The following six major operation types were selected: cardiac, stomach, colorectal, hip, knee, and spine. Clinical features, laboratory findings, perioperative variables, and medication history were compared between patients without POD and with POD.
Six hundred eighty-six of 3634 patients (18.9%) developed POD. In multivariate logistic regression analysis, common, independent RFs of POD were as follows (descending order of odds ratio): operation type ([hip] OR 8.858, 95%CI 3.432-22.863; p = 0.000; [knee] OR 7.492, 95%CI 2.739-20.487; p = 0.000; [spine] OR 6.919, 95%CI 2.687-17.815; p = 0.000; [colorectal] OR 2.037, 95%CI 0.784-5.291; p = 0.144; [stomach] OR 1.500, 95%CI 0.532-4.230; p = 0.443; [cardiac] reference), parkinsonism (OR 2.945, 95%CI 1.564-5.547; p = 0.001), intensive care unit stay (OR 1.675, 95%CI 1.354-2.072; p = 0.000), stroke history (OR 1.591, 95%CI 1.112-2.276; p = 0.011), use of hypnotics and sedatives (OR 1.307, 95%CI 1.072-1.594; p = 0.008), higher creatinine (OR 1.107, 95%CI 1.004-1.219; p = 0.040), lower hematocrit (OR 0.910, 95%CI 0.836-0.991; p = 0.031), older age (OR 1.053, 95%CI 1.037-1.069; p = 0.000), and lower body mass index (OR 0.967, 95%CI 0.942-0.993; p = 0.013). The use of analgesics (OR 0.644, 95%CI 0.467-0.887; p = 0.007) and antihistamines/antiallergics (OR 0.764, 95%CI 0.622-0.937; p = 0.010) were risk-reducing factors. Operation type with the highest odds ratio for POD was orthopedic surgery.
Big data analytics could be applied to evaluate RFs in electronic medical records. We identified common RFs of POD, regardless of operation type. Big data analytics may be helpful for the comprehensive understanding of POD RFs, which can help physicians develop a general plan to prevent POD.
老年人术后谵妄(POD)是一种非常严重的并发症。由于风险因素(RFs)太多,可能需要对 RFs 进行全面评估。本研究旨在使用智能临床数据仓库(CDW)全面评估 POD 的 RFs,无论接受手术的器官如何,有效地整合了大数据的概念。
我们回顾了 2010 年 1 月至 2016 年 6 月期间在翰林大学圣心医院接受主要手术的 65 岁及以上住院患者的电子病历。选择了以下六种主要手术类型:心脏、胃、结直肠、髋、膝和脊柱。比较了无 POD 患者和有 POD 患者的临床特征、实验室检查结果、围手术期变量和用药史。
3634 例患者中有 686 例(18.9%)发生 POD。在多变量逻辑回归分析中,POD 的常见、独立 RFs 如下(按优势比降序排列):手术类型([髋] OR 8.858,95%CI 3.432-22.863;p=0.000;[膝] OR 7.492,95%CI 2.739-20.487;p=0.000;[脊柱] OR 6.919,95%CI 2.687-17.815;p=0.000;[结直肠] OR 2.037,95%CI 0.784-5.291;p=0.144;[胃] OR 1.500,95%CI 0.532-4.230;p=0.443;[心脏] 参考),帕金森病(OR 2.945,95%CI 1.564-5.547;p=0.001),重症监护病房(OR 1.675,95%CI 1.354-2.072;p=0.000),中风史(OR 1.591,95%CI 1.112-2.276;p=0.011),使用催眠镇静药(OR 1.307,95%CI 1.072-1.594;p=0.008),肌酐升高(OR 1.107,95%CI 1.004-1.219;p=0.040),血细胞比容降低(OR 0.910,95%CI 0.836-0.991;p=0.031),年龄较大(OR 1.053,95%CI 1.037-1.069;p=0.000),体重指数较低(OR 0.967,95%CI 0.942-0.993;p=0.013)。使用镇痛药(OR 0.644,95%CI 0.467-0.887;p=0.007)和抗组胺药/抗过敏药(OR 0.764,95%CI 0.622-0.937;p=0.010)是降低风险的因素。POD 发生率最高的手术类型为骨科手术。
大数据分析可应用于电子病历中 RFs 的评估。我们确定了 POD 的常见 RFs,无论手术类型如何。大数据分析可能有助于全面了解 POD 的 RFs,这有助于医生制定预防 POD 的一般计划。