Department of Physics , Beijing Normal University , 100875 Beijing , China.
Institute of Microstructures and Properties of Advanced Materials , Beijing University of Technology , 100124 Beijing , China.
ACS Appl Mater Interfaces. 2019 Feb 20;11(7):7296-7302. doi: 10.1021/acsami.8b22080. Epub 2019 Feb 6.
Layered perovskites with Aurivillius phase have drawn tremendous attention recently, owing to their high ferroelectric Curie temperatures, large spontaneous polarization, and fatigue-free and environment-friendly characteristics. BiWO is one of the simplest members in the Aurivillius family with superior ferroelastic and photo-electrochemical behaviors. The self-assembly fabrication of its nanoarchitectures and strategic modulation of their ferroelastic switching are crucial toward highly efficient nanoscale applications. In this work, BiWO nanobrick arrays were epitaxially grown along the orthorhombic direction in a self-assembled way. Such a nanoscale topology supports out-of-plane and in-plane vectors of ferroelectric polarizations, enabling a perpendicular voltage manipulation of these emerging ferroelectric/elastic domains. Combining the scanning probe technique and transmission electron microscopy, we confirmed the in-plane polarization vectors of 78.6 and 101.4° within the crystallographic axes of the nanobricks with respect to the (110) plane of the substrate. Thus, this work provides new opportunities for ferroelectric/elastic engineering in BiWO nanostructures for a wide range of applications, such as sensing, actuating, and catalysis.
具有钙钛矿层状结构的准晶相材料因其具有高铁电居里温度、大自发极化强度、疲劳和环保等特性而受到广泛关注。BiWO 是准晶家族中最简单的成员之一,具有优异的铁弹性和光电化学性能。其纳米结构的自组装制备及其铁弹性开关的战略调控对于高效纳米应用至关重要。在这项工作中,BiWO 纳米砖阵列沿正交方向以自组装的方式外延生长。这种纳米级拓扑结构支持铁电极化的面外和面内矢量,从而可以对这些新兴的铁电/弹性畴进行垂直电压控制。通过扫描探针技术和透射电子显微镜相结合,我们证实了纳米砖相对于衬底(110)面的晶体轴内的铁电极化矢量为 78.6°和 101.4°。因此,这项工作为 BiWO 纳米结构中的铁电/弹性工程提供了新的机会,可应用于传感、致动和催化等广泛领域。