Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States.
J Chem Theory Comput. 2019 Mar 12;15(3):1514-1522. doi: 10.1021/acs.jctc.8b01025. Epub 2019 Mar 4.
Modeling peptide assembly from monomers on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we present a new approach which integrates coarse-grained (CG), mixed-resolution, and all-atom (AA) modeling in a single simulation. We simulate the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the mixed-resolution and AA models. We have implemented this top-down approach with new tools to automate model transformations and to monitor oligomer formations. Further, a theory was developed to estimate the optimal simulation length for each stage using a model peptide, melittin. The assembly level, the oligomer distribution, and the secondary structures of melittin simulated by the optimal protocol show good agreement with prior experiments and AA simulations. Finally, our approach and theory have been successfully validated with three amyloid peptides (β-amyloid 16-22, GNNQQNY fragment from the yeast prion protein SUP35, and α-synuclein fibril 35-55), which highlight the synergy from modeling at multiple resolutions. This work not only serves as proof of concept for multiresolution simulation studies but also presents practical guidelines for further self-assembly simulations at more physically and chemically relevant scales.
从单体在大时间和长度尺度上建模肽组装通常在原子分辨率下是难以处理的。为了解决这个挑战,我们提出了一种新的方法,该方法将粗粒度(CG)、混合分辨率和全原子(AA)建模集成在单个模拟中。我们使用 CG 模型模拟初始接触阶段,而使用混合分辨率和 AA 模型模拟进一步的组装和重组阶段。我们使用新工具实现了这种自上而下的方法,以实现模型转换的自动化,并监测低聚物的形成。此外,我们还开发了一种理论,使用模型肽(蜂毒素)来估计每个阶段的最佳模拟长度。使用最佳方案模拟的蜂毒素的组装水平、低聚物分布和二级结构与先前的实验和 AA 模拟结果吻合较好。最后,我们的方法和理论已成功应用于三种淀粉样肽(β-淀粉样蛋白 16-22、来自酵母朊病毒蛋白 SUP35 的 GNNQQNY 片段和α-突触核蛋白纤维 35-55),这突出了多分辨率建模的协同作用。这项工作不仅为多分辨率模拟研究提供了概念验证,而且为在更物理和化学相关的尺度上进行进一步的自组装模拟提供了实用的指导原则。