Suppr超能文献

通过时空事件检测和聚类对多元移动数据进行索引。

Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering.

机构信息

Department of Computer Science, University of Rochester, NY 14620, USA.

Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane 4072, Australia.

出版信息

Sensors (Basel). 2019 Jan 22;19(3):448. doi: 10.3390/s19030448.

Abstract

Mobile and wearable devices are capable of quantifying user behaviors based on their contextual sensor data. However, few indexing and annotation mechanisms are available, due to difficulties inherent in raw multivariate data types and the relative sparsity of sensor data. These issues have slowed the development of higher level human-centric searching and querying mechanisms. Here, we propose a pipeline of three algorithms. First, we introduce a spatio-temporal event detection algorithm. Then, we introduce a clustering algorithm based on mobile contextual data. Our spatio-temporal clustering approach can be used as an annotation on raw sensor data. It improves information retrieval by reducing the search space and is based on searching only the related clusters. To further improve behavior quantification, the third algorithm identifies contrasting events a cluster content. Two large real-world smartphone datasets have been used to evaluate our algorithms and demonstrate the utility and resource efficiency of our approach to .

摘要

移动和可穿戴设备能够基于其上下文传感器数据来量化用户行为。然而,由于原始多元数据类型固有的困难和传感器数据的相对稀疏性,几乎没有索引和注释机制。这些问题已经减缓了更高级别的以人为中心的搜索和查询机制的发展。在这里,我们提出了一个由三个算法组成的流水线。首先,我们引入了一种时空事件检测算法。然后,我们引入了一种基于移动上下文数据的聚类算法。我们的时空聚类方法可以作为原始传感器数据的注释。它通过减少搜索空间来提高信息检索的效率,并且仅基于搜索相关的聚类。为了进一步提高行为量化,第三个算法识别出了聚类内容中的对比事件。我们使用两个大型真实智能手机数据集来评估我们的算法,并展示我们的方法在这方面的实用性和资源效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1c/6387349/abc47f09999e/sensors-19-00448-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验