Suppr超能文献

纤维素-淀粉杂化膜的增塑研究:水合氯化锌溶液的作用。

Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl₂ Solution.

机构信息

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Fine Chemical Research Institute, Guangzhou University, Guangzhou 510006, China.

出版信息

Int J Mol Sci. 2019 Jan 22;20(3):474. doi: 10.3390/ijms20030474.

Abstract

Starch and cellulose are two typical natural polymers from plants that have similar chemical structures. The blending of these two biopolymers for materials development is an interesting topic, although how their molecular interactions could influence the conformation and properties of the resultant materials has not been studied extensively. Herein, the rheological properties of cellulose/starch/ZnCl₂ solutions were studied, and the structures and properties of cellulose-starch hybrid films were characterized. The rheological study shows that compared with starch (containing mostly amylose), cellulose contributed more to the solution's viscosity and has a stronger shear-thinning behavior. A comparison between the experimental and calculated zero-shear-rate viscosities indicates that compact complexes (interfacial interactions) formed between cellulose and starch with ≤50 wt % cellulose content, whereas a loose structure (phase separation) existed with ≥70 wt % cellulose content. For starch-rich hybrid films prepared by compression molding, less than 7 wt % of cellulose was found to improve the mechanical properties despite the reduced crystallinity of the starch; for cellulose-rich hybrid films, a higher content of starch reduced the material properties, although the chemical interactions were not apparently influenced. It is concluded that the mechanical properties of biopolymer films were mainly affected by the structural conformation, as indicated by the rheological results.

摘要

淀粉和纤维素是两种来自植物的典型天然聚合物,它们具有相似的化学结构。将这两种生物聚合物混合用于材料开发是一个有趣的课题,尽管它们的分子相互作用如何影响所得材料的构象和性能尚未得到广泛研究。本文研究了纤维素/淀粉/ZnCl₂溶液的流变性能,并对纤维素-淀粉杂化膜的结构和性能进行了表征。流变研究表明,与主要含有直链淀粉的淀粉相比,纤维素对溶液的粘度贡献更大,具有更强的剪切变稀行为。实验和计算的零剪切粘度比较表明,在纤维素含量≤50wt%时,纤维素和淀粉之间形成了紧密的配合物(界面相互作用),而在纤维素含量≥70wt%时存在松散的结构(相分离)。对于通过压缩成型制备的富含淀粉的杂化膜,尽管淀粉的结晶度降低,但发现少于 7wt%的纤维素可以改善机械性能;对于富含纤维素的杂化膜,较高含量的淀粉会降低材料性能,尽管化学相互作用没有明显影响。结论是,正如流变结果所示,生物聚合物膜的力学性能主要受结构构象的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dfc/6386833/0126669514e2/ijms-20-00474-g001.jpg

相似文献

1
Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl₂ Solution.
Int J Mol Sci. 2019 Jan 22;20(3):474. doi: 10.3390/ijms20030474.
2
Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water.
Chem Commun (Camb). 2012 Jun 4;48(44):5494-6. doi: 10.1039/c2cc00122e. Epub 2012 Apr 25.
3
Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
J Food Sci. 2012 Jun;77(6):N14-9. doi: 10.1111/j.1750-3841.2012.02710.x. Epub 2012 May 14.
4
Zinc chloride aqueous solution as a solvent for starch.
Carbohydr Polym. 2016 Jan 20;136:266-73. doi: 10.1016/j.carbpol.2015.09.007. Epub 2015 Sep 4.
6
Compression molding and tensile properties of thermoplastic potato starch materials.
Biomacromolecules. 2006 Mar;7(3):981-6. doi: 10.1021/bm050804c.
7
Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.
Carbohydr Polym. 2013 Mar 1;93(1):307-15. doi: 10.1016/j.carbpol.2012.10.020. Epub 2012 Oct 26.
8
Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.
Carbohydr Polym. 2016 Sep 20;149:83-93. doi: 10.1016/j.carbpol.2016.04.087. Epub 2016 Apr 23.
9
Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties.
Carbohydr Polym. 2013 Mar 1;93(1):199-206. doi: 10.1016/j.carbpol.2012.01.090. Epub 2012 Feb 9.
10
Effect of cellulose nanocrystals and gelatin in corn starch plasticized films.
Carbohydr Polym. 2015 Jan 22;115:215-22. doi: 10.1016/j.carbpol.2014.08.057. Epub 2014 Sep 3.

引用本文的文献

2
Valorization of Starch to Biobased Materials: A Review.
Polymers (Basel). 2022 May 30;14(11):2215. doi: 10.3390/polym14112215.
3
Chitosan Hydrogel Beads Supported with Ceria for Boron Removal.
Int J Mol Sci. 2019 Mar 28;20(7):1567. doi: 10.3390/ijms20071567.

本文引用的文献

1
Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution.
J Mater Chem B. 2014 Jul 7;2(25):3924-3936. doi: 10.1039/c4tb00329b. Epub 2014 May 19.
2
Starch-zinc complex and its reinforcement effect on starch-based materials.
Carbohydr Polym. 2019 Feb 15;206:528-538. doi: 10.1016/j.carbpol.2018.11.034. Epub 2018 Nov 14.
3
Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid.
Int J Biol Macromol. 2019 Mar 1;124:314-320. doi: 10.1016/j.ijbiomac.2018.11.138. Epub 2018 Nov 16.
7
Emerging Chitosan-Based Films for Food Packaging Applications.
J Agric Food Chem. 2018 Jan 17;66(2):395-413. doi: 10.1021/acs.jafc.7b04528. Epub 2018 Jan 4.
8
Halloysite Nanotubes: Controlled Access and Release by Smart Gates.
Nanomaterials (Basel). 2017 Jul 28;7(8):199. doi: 10.3390/nano7080199.
9
Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems.
Carbohydr Polym. 2017 Feb 10;157:669-676. doi: 10.1016/j.carbpol.2016.10.037. Epub 2016 Oct 14.
10
Sustainable polymers from renewable resources.
Nature. 2016 Dec 14;540(7633):354-362. doi: 10.1038/nature21001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验