Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, PR China.
Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:776-783. doi: 10.1016/j.msec.2018.12.110. Epub 2018 Dec 28.
Recent advances in selective integration of micro and nano-scaled features towards material design have paved way to enhance desirable properties or functions of biomaterials. For drug delivery applications these include improved active component encapsulation, controlled drug release and managed interaction with the intended host environment. Electrohydrodynamic (EHD) direct-printing technique is a one-step on demand fiber deposition method which enables precise micron-scaled topographic and structural enhancement during material fabrication. In this study, core-sheath composite fibers comprising polycaprolactone, polyvinyl pyrrolidone and the drug tetracycline hydrochloride were prepared using the coaxial format of EHD direct-printing. Once positioned and aligned; multi-stacked fibers gave rise to patches. Coaxial fiber (diameter range ~13-25 μm) optimization (deposition and integrity) involved parameter-structure (e.g. collector speed, flow rate, working distance and applied voltage) impact analysis. Water contact angle measurements, tensile testing and Fourier transform infrared spectroscopy were used to analyze core-sheath integrated patches. In-vitro drug release studies clearly elude to the impact of core-shell and patterned architectures; demonstrating their viability and the forming method as emerging tools for advanced drug delivery system design and fabrication.
近年来,微纳尺度特征的选择性集成在材料设计方面取得了进展,为增强生物材料的理想性能或功能铺平了道路。对于药物输送应用,这些改进包括改善活性成分包封、控制药物释放和管理与预期宿主环境的相互作用。电动力学(EHD)直接打印技术是一种按需纤维沉积的一步法,可在材料制造过程中实现精确的微米级形貌和结构增强。在这项研究中,使用 EHD 直接打印的同轴格式制备了包含聚己内酯、聚乙烯吡咯烷酮和药物盐酸四环素的芯鞘复合纤维。一旦定位和对齐,多堆叠纤维就会产生补丁。同轴纤维(直径范围~13-25 μm)的优化(沉积和完整性)涉及参数结构(例如收集器速度、流速、工作距离和施加电压)的影响分析。使用水接触角测量、拉伸测试和傅里叶变换红外光谱分析来分析芯鞘集成的补丁。体外药物释放研究清楚地表明了核壳和图案化结构的影响;证明了它们的可行性以及形成方法作为先进药物输送系统设计和制造的新兴工具。