Mea H, Wan J
Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA.
Biomicrofluidics. 2022 Mar 3;16(2):021501. doi: 10.1063/5.0083673. eCollection 2022 Mar.
Microfluidic technology has established itself as a powerful tool to enable highly precise spatiotemporal control over fluid streams for mixing, separations, biochemical reactions, and material synthesis. 3D printing technologies such as extrusion-based printing, inkjet, and stereolithography share similar length scales and fundamentals of fluid handling with microfluidics. The advanced fluidic manipulation capabilities afforded by microfluidics can thus be potentially leveraged to enhance the performance of existing 3D printing technologies or even develop new approaches to additive manufacturing. This review discusses recent developments in integrating microfluidic elements with several well-established 3D printing technologies, highlighting the trend of using microfluidic approaches to achieve functional and multimaterial 3D printing as well as to identify potential future research directions in this emergent area.
微流控技术已成为一种强大的工具,能够对流体流进行高精度的时空控制,以实现混合、分离、生化反应和材料合成。基于挤出的打印、喷墨打印和立体光刻等3D打印技术与微流控技术在流体处理的长度尺度和基本原理方面有相似之处。因此,微流控技术所具备的先进流体操控能力有可能被用于提升现有3D打印技术的性能,甚至开发新的增材制造方法。本综述讨论了将微流控元件与几种成熟的3D打印技术相结合的最新进展,突出了利用微流控方法实现功能性和多材料3D打印的趋势,并确定了这一新兴领域未来潜在的研究方向。