Suppr超能文献

通过整合多种组学分析实现登革出血热的药物重定位。

Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses.

机构信息

Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.

Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, 600 036, India.

出版信息

Sci Rep. 2019 Jan 24;9(1):523. doi: 10.1038/s41598-018-36636-1.

Abstract

To detect drug candidates for dengue haemorrhagic fever (DHF), we employed a computational drug repositioning method to perform an integrated multiple omics analysis based on transcriptomic, proteomic, and interactomic data. We identified 3,892 significant genes, 389 proteins, and 221 human proteins by transcriptomic analysis, proteomic analysis, and human-dengue virus protein-protein interactions, respectively. The drug candidates were selected using gene expression profiles for inverse drug-disease relationships compared with DHF patients and healthy controls as well as interactomic relationships between the signature proteins and chemical compounds. Integrating the results of the multiple omics analysis, we identified eight candidates for drug repositioning to treat DHF that targeted five proteins (ACTG1, CALR, ERC1, HSPA5, SYNE2) involved in human-dengue virus protein-protein interactions, and the signature proteins in the proteomic analysis mapped to significant pathways. Interestingly, five of these drug candidates, valparoic acid, sirolimus, resveratrol, vorinostat, and Y-27632, have been reported previously as effective treatments for flavivirus-induced diseases. The computational approach using multiple omics data for drug repositioning described in this study can be used effectively to identify novel drug candidates.

摘要

为了发现登革出血热(DHF)的药物候选物,我们采用计算药物重定位方法,基于转录组学、蛋白质组学和蛋白质相互作用组学数据进行综合的多组学分析。我们分别通过转录组学分析、蛋白质组学分析和人-登革热病毒蛋白-蛋白相互作用鉴定了 3892 个显著基因、389 个蛋白和 221 个人类蛋白。通过与 DHF 患者和健康对照的基因表达谱进行反向药物-疾病关系比较,以及特征蛋白与化学化合物之间的蛋白质相互作用关系,选择药物候选物。通过整合多组学分析的结果,我们确定了 8 种用于 DHF 治疗的药物重定位候选物,这些候选物靶向了 5 种参与人-登革热病毒蛋白-蛋白相互作用的蛋白质(ACTG1、CALR、ERC1、HSPA5、SYNE2),以及蛋白质组学分析中映射到显著途径的特征蛋白。有趣的是,这些药物候选物中有 5 种,即丙戊酸、西罗莫司、白藜芦醇、伏立诺他和 Y-27632,先前已被报道可有效治疗黄病毒引起的疾病。本研究中描述的使用多组学数据进行药物重定位的计算方法可有效用于识别新型药物候选物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验