Suppr超能文献

免疫信息学和系统生物学方法预测和验证针对 Epstein-Barr 病毒 (EBV) 的肽疫苗。

Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein-Barr virus (EBV).

机构信息

State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Center for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan.

出版信息

Sci Rep. 2019 Jan 24;9(1):720. doi: 10.1038/s41598-018-37070-z.

Abstract

Epstein-Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is a member of the Herpesviridae family and causes infectious mononucleosis, Burkitt's lymphoma, and nasopharyngeal carcinoma. Even in the United States of America, the situation is alarming, as EBV affects 95% of the young population between 35 and 40 years of age. In this study, both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted by using the ElliPro and NetCTL.1.2 webservers for EBV proteins (GH, GL, GB, GN, GM, GP42 and GP350). Molecular modelling tools were used to predict the 3D coordinates of peptides, and these peptides were then docked against the MHC molecules to obtain peptide-MHC complexes. Studies of their post-docking interactions helped to select potential candidates for the development of peptide vaccines. Our results predicted a total of 58 T-cell epitopes of EBV;  where the most potential were selected based on their TAP, MHC binding and C-terminal Cleavage score. The top most peptides were subjected to MD simulation and stability analysis. Validation of our predicted epitopes using a 0.45 µM concentration was carried out by using a systems biology approach. Our results suggest a panel of epitopes that could be used to immunize populations to protect against multiple diseases caused by EBV.

摘要

EB 病毒(EBV),也称为人类疱疹病毒 4 型(HHV-4),是疱疹病毒科的一员,可引起传染性单核细胞增多症、伯基特淋巴瘤和鼻咽癌。即使在美国,情况也令人担忧,因为 EBV 影响了 95%的 35 至 40 岁的年轻人。在这项研究中,使用 ElliPro 和 NetCTL.1.2 网络服务器对 EBV 蛋白(GH、GL、GB、GN、GM、GP42 和 GP350)进行了线性和构象 B 细胞表位以及细胞毒性 T 淋巴细胞(CTL)表位的预测。使用分子建模工具来预测肽的 3D 坐标,然后将这些肽对接 MHC 分子以获得肽-MHC 复合物。对它们对接后的相互作用进行研究有助于选择潜在的候选肽疫苗。我们的研究总共预测了 EBV 的 58 个 T 细胞表位;根据 TAP、MHC 结合和 C 末端切割评分选择最有潜力的表位。选择最具潜力的肽进行 MD 模拟和稳定性分析。使用系统生物学方法,使用 0.45µM 浓度对我们预测的表位进行验证。我们的研究结果表明,可以使用一组表位来免疫人群,以预防由 EBV 引起的多种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e73f/6346095/51dc377b77cf/41598_2018_37070_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验