Krausmann Fridolin, Lauk Christian, Haas Willi, Wiedenhofer Dominik
Institute of Social Ecology (SEC), Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, Vienna, Schottenfeldgasse 29, 1070 Wien, Austria.
Glob Environ Change. 2018 Sep;52:131-140. doi: 10.1016/j.gloenvcha.2018.07.003.
The size and structure of the socioeconomic metabolism are key for the planet's sustainability. In this article, we provide a consistent assessment of the development of material flows through the global economy in the period 1900-2015 using material flow accounting in combination with results from dynamic stock-flow modelling. Based on this approach, we can trace materials from extraction to their use, their accumulation in in-use stocks and finally to outflows of wastes and emissions and provide a comprehensive picture of the evolution of societies metabolism during global industrialization. This enables outlooks on inflows and outflows, which environmental policy makers require for pursuing strategies towards a more sustainable resource use. Over the whole time period, we observe a growth in global material extraction by a factor of 12 to 89 Gt/yr. A shift from materials for dissipative use to stock building materials resulted in a massive increase of in-use stocks of materials to 961 Gt in 2015. Since materials increasingly accumulate in stocks, outflows of wastes are growing at a slower pace than inputs. In 2015, outflows amounted to 58 Gt/yr, of which 35% were solid wastes and 25% emissions, the reminder being excrements, dissipative use and water vapor. Our results indicate a significant acceleration of global material flows since the beginning of the 21 century. We show that this acceleration, which took off in 2002, was not a short-term phenomenon but continues since more than a decade. Between 2002 and 2015, global material extraction increased by 53% in spite of the 2008 economic crisis. Based on detailed data on material stocks and flows and information on their long-term historic development, we make a rough estimate of what a global convergence of metabolic patterns at the current level in industrialized countries paired with a continuation of past efficiency gains might imply for global material demand. We find that in such a scenario until 2050 average global metabolic rates double to 22 t/cap/yr and material extraction increases to around 218 Gt/yr. Overall the analysis indicates a grand challenge calling for urgent action, fostering a continuous and considerable reduction of material flows to acceptable levels.
社会经济新陈代谢的规模和结构是地球可持续发展的关键。在本文中,我们结合动态存量-流量建模的结果,运用物质流核算方法,对1900年至2015年期间全球经济中物质流的发展进行了连贯评估。基于这种方法,我们可以追踪物质从开采到使用、在使用中的存量积累,最后到废物和排放的流出情况,并全面描绘全球工业化过程中社会新陈代谢的演变。这使得我们能够展望流入和流出情况,而这正是环境政策制定者在推行更可持续资源利用战略时所需要的。在整个时间段内,我们观察到全球物质开采量增长了12倍,达到890亿吨/年。从用于耗散性使用的物质向用于存量建设的物质的转变,导致2015年物质在使用中的存量大幅增加至9610亿吨。由于物质越来越多地在存量中积累,废物的流出速度比输入速度增长得慢。2015年,流出量为58亿吨/年,其中35%是固体废物,25%是排放物,其余为排泄物、耗散性使用和水蒸气。我们的结果表明,自21世纪初以来全球物质流显著加速。我们表明,这种始于2002年的加速并非短期现象,而是持续了十多年。在2002年至2015年期间,尽管发生了2008年经济危机,全球物质开采量仍增长了53%。基于关于物质存量和流量的详细数据以及它们长期历史发展的信息,我们粗略估计了工业化国家当前水平的代谢模式全球趋同以及过去效率提升的持续可能对全球物质需求意味着什么。我们发现,在这种情况下,到2050年全球平均代谢率将翻倍至每人每年22吨,物质开采量将增加到约2180亿吨/年。总体而言,分析表明这是一个巨大的挑战,需要采取紧急行动,促使物质流持续大幅减少至可接受水平。