van der Loos Luna M, Schmid Matthias, Leal Pablo P, McGraw Christina M, Britton Damon, Revill Andrew T, Virtue Patti, Nichols Peter D, Hurd Catriona L
Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia.
Marine Ecology University of Groningen Groningen The Netherlands.
Ecol Evol. 2018 Dec 14;9(1):125-140. doi: 10.1002/ece3.4679. eCollection 2019 Jan.
Increased plant biomass is observed in terrestrial systems due to rising levels of atmospheric CO, but responses of marine macroalgae to CO enrichment are unclear. The 200% increase in CO by 2100 is predicted to enhance the productivity of fleshy macroalgae that acquire inorganic carbon solely as CO (non-carbon dioxide-concentrating mechanism [CCM] species-i.e., species without a carbon dioxide-concentrating mechanism), whereas those that additionally uptake bicarbonate (CCM species) are predicted to respond neutrally or positively depending on their affinity for bicarbonate. Previous studies, however, show that fleshy macroalgae exhibit a broad variety of responses to CO enrichment and the underlying mechanisms are largely unknown. This physiological study compared the responses of a CCM species () with a non-CCM species () to CO enrichment with regards to growth, net photosynthesis, and biochemistry. Contrary to expectations, there was no enrichment effect for the non-CCM species, whereas the CCM species had a twofold greater growth rate, likely driven by a downregulation of the energetically costly CCM(s). This saved energy was invested into new growth rather than storage lipids and fatty acids. In addition, we conducted a comprehensive literature synthesis to examine the extent to which the growth and photosynthetic responses of fleshy macroalgae to elevated CO are related to their carbon acquisition strategies. Findings highlight that the responses of macroalgae to CO enrichment cannot be inferred solely from their carbon uptake strategy, and targeted physiological experiments on a wider range of species are needed to better predict responses of macroalgae to future oceanic change.
由于大气中二氧化碳水平上升,陆地系统中植物生物量增加,但海洋大型藻类对二氧化碳浓度升高的反应尚不清楚。预计到2100年二氧化碳浓度增加200%将提高仅以二氧化碳形式获取无机碳的肉质大型藻类(即没有二氧化碳浓缩机制的物种)的生产力,而那些额外吸收碳酸氢盐的物种(有二氧化碳浓缩机制的物种)预计将根据它们对碳酸氢盐的亲和力产生中性或正向反应。然而,先前的研究表明,肉质大型藻类对二氧化碳浓度升高表现出广泛的反应,其潜在机制在很大程度上尚不清楚。这项生理学研究比较了一种有二氧化碳浓缩机制的物种()和一种没有二氧化碳浓缩机制的物种()对二氧化碳浓度升高在生长、净光合作用和生物化学方面的反应。与预期相反,没有二氧化碳浓缩机制的物种没有出现浓度升高效应,而有二氧化碳浓缩机制的物种生长速率提高了两倍,这可能是由于能量消耗大的二氧化碳浓缩机制下调所致。节省下来的能量被投入到新的生长中,而不是储存脂质和脂肪酸。此外,我们进行了一项全面的文献综述,以研究肉质大型藻类对升高的二氧化碳的生长和光合反应与其碳获取策略的相关程度。研究结果突出表明,不能仅从大型藻类的碳吸收策略推断其对二氧化碳浓度升高的反应,需要对更广泛的物种进行有针对性的生理实验,以更好地预测大型藻类对未来海洋变化的反应。