Suppr超能文献

微图案化弹性体在软质基底上的剥离力和摩擦力:图案长度尺度与刚度的影响

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness.

作者信息

van Assenbergh Peter, Fokker Marike, Langowski Julian, van Esch Jan, Kamperman Marleen, Dodou Dimitra

机构信息

Biomechanical Engineering Department, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Experimental Zoology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands.

出版信息

Beilstein J Nanotechnol. 2019 Jan 8;10:79-94. doi: 10.3762/bjnano.10.8. eCollection 2019.

Abstract

The adhesiveness of biological micropatterned adhesives primarily relies on their geometry (e.g., feature size, architecture) and material properties (e.g., stiffness). Over the last few decades, researchers have been mimicking the geometry and material properties of biological micropatterned adhesives. The performance of these biomimetic micropatterned adhesives is usually tested on hard substrates. Much less is known about the effect of geometry, feature size, and material properties on the performance of micropatterned adhesives when the substrate is deformable. Here, micropatterned adhesives of two stiffness degrees (Young's moduli of 280 and 580 kPa) were fabricated from poly(dimethylsiloxane) (PDMS) and tested on soft poly(vinyl alcohol) (PVA) substrates of two stiffness degrees (12 and 18 kPa), and on hard glass substrates as a reference. An out-of-the-cleanroom colloidal lithographic approach was successfully expanded to fabricate adhesives with two geometries, namely dimples with and without a terminal layer. Dimples without a terminal layer were fabricated on two length scales, namely with sub-microscale and microscale dimple diameters. The cross section of samples with a terminal layer showed voids with a spherical shape, separated by hourglass-shaped walls. These voids penetrate the terminal layer, resulting in an array of holes at the surface. We found that on soft substrates, generally, the size of the dimples did not affect pull-off forces. The positive effects of sub-microscale features on pull-off and friction forces, such as defect control and crack trapping, as reported in the literature for hard substrates, seem to disappear on soft substrates. The dimple geometry with a terminal layer generated significantly higher pull-off forces compared to other geometries, presumably due to interlocking of the soft substrate into the holes of the terminal layer. Pull-off from soft substrates increased with the substrate stiffness for all tested geometries. Friction forces on soft substrates were the highest for microscale dimples without a terminal layer, likely due to interlocking of the soft substrate between the dimples.

摘要

生物微图案化粘合剂的粘附性主要取决于其几何形状(如特征尺寸、结构)和材料特性(如刚度)。在过去几十年中,研究人员一直在模仿生物微图案化粘合剂的几何形状和材料特性。这些仿生微图案化粘合剂的性能通常在硬质基材上进行测试。当基材可变形时,关于几何形状、特征尺寸和材料特性对微图案化粘合剂性能的影响知之甚少。在此,由聚二甲基硅氧烷(PDMS)制备了两种刚度(杨氏模量分别为280和580 kPa)的微图案化粘合剂,并在两种刚度(12和18 kPa)的软质聚乙烯醇(PVA)基材上以及作为参考的硬质玻璃基材上进行了测试。一种非洁净室胶体光刻方法成功扩展用于制备具有两种几何形状的粘合剂,即有和没有终端层的凹坑。没有终端层的凹坑在两个长度尺度上制备,即具有亚微米级和微米级凹坑直径。具有终端层的样品的横截面显示出球形的空隙,由沙漏形壁隔开。这些空隙穿透终端层,在表面形成一系列孔。我们发现,在软质基材上,一般来说,凹坑的尺寸不影响拉脱力。如文献中针对硬质基材所报道的,亚微米级特征对拉脱力和摩擦力的积极影响,如缺陷控制和裂纹捕获,在软质基材上似乎消失了。与其他几何形状相比,具有终端层的凹坑几何形状产生的拉脱力显著更高,这可能是由于软质基材与终端层的孔相互嵌合所致。对于所有测试的几何形状,从软质基材上的拉脱力随基材刚度的增加而增加。软质基材上的摩擦力对于没有终端层的微米级凹坑最高,这可能是由于软质基材在凹坑之间相互嵌合所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca4/6334791/f9fe65da01a7/Beilstein_J_Nanotechnol-10-79-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验