Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia.
Trends Biochem Sci. 2019 May;44(5):433-452. doi: 10.1016/j.tibs.2018.11.012. Epub 2019 Jan 24.
With revolutionary advances in next-generation sequencing, the human transcriptome has been comprehensively interrogated. These discoveries have highlighted the emerging functional and regulatory roles of a large fraction of RNAs suggesting the potential they might hold as stable and minimally invasive disease biomarkers. Although a plethora of molecular-biology- and biosensor-based RNA-detection strategies have been developed, clinical application of most of these is yet to be realized. Multifunctional nanomaterials coupled with sensitive and robust electrochemical readouts may prove useful in these applications. Here, we summarize the major contributions of engineered nanomaterials-based electrochemical biosensing strategies for the analysis of miRNAs. With special emphasis on nanostructure-based detection, this review also chronicles the needs and challenges of miRNA detection and provides a future perspective on the presented strategies.
随着下一代测序技术的革命性进步,人类转录组得到了全面研究。这些发现突出了大量 RNA 的新兴功能和调节作用,表明它们可能作为稳定和微创的疾病生物标志物具有潜力。尽管已经开发出大量基于分子生物学和生物传感器的 RNA 检测策略,但这些策略中的大多数尚未得到临床应用。多功能纳米材料与敏感和强大的电化学读出相结合,可能在这些应用中证明是有用的。在这里,我们总结了基于工程纳米材料的电化学生物传感策略在 miRNA 分析方面的主要贡献。特别强调基于纳米结构的检测,本综述还记录了 miRNA 检测的需求和挑战,并对所提出的策略提供了未来展望。