Suppr超能文献

使用抗体功能化肽纳米管进行病毒检测。

Virus assay using antibody-functionalized peptide nanotubes.

作者信息

MacCuspie Robert I, Banerjee Ipsita A, Pejoux Christophe, Gummalla Sanjay, Mostowski Howard S, Krause Philip R, Matsui Hiroshi

机构信息

Department of Chemistry, City University of New York, Huner College and the Graduate Center, 695 Park Ave, New York, NY, 10065, USA; ; Tel: +1 (212) 650 3918.

Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccine Research and Review, Division of Viral Products, 29 Lincoln Drive, Bethesda, MD, 20852, USA; ; Tel: +1 (301) 827 1914.

出版信息

Soft Matter. 2008;4(4):833-839. doi: 10.1039/b714470a. Epub 2008 Feb 22.

Abstract

Robust trace-level detection of viruses is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. We report a new method for rapid and highly sensitive detection of viruses utilizing fluorescent antibody nanotubes. When viral pathogens were mixed with these antibody nanotubes, the nanotubes rapidly aggregated around the viruses to form a networking structure. Trace quantities of viruses such as herpes simplex virus type 2, adenovirus, vaccinia and influenza type B were detected on attomolar order by changes in fluorescence and light scattering intensities associated with aggregation of dye-loaded antibody nanotubes around viruses. High specificity of each antibody nanotube toward its targeted virus was demonstrated by quantifying concentrations of two different viruses in mixtures. This antibody nanotube assay detects targeted pathogens within 30 minutes after incubation with antibody nanotubes. This antibody nanotube assay could fill a pressing need to detect and quantify viruses both rapidly and sensitively.

摘要

对病毒进行可靠的痕量检测对于满足抗击疾病传播或检测生物恐怖主义事件的迫切需求至关重要。我们报告了一种利用荧光抗体纳米管快速、高灵敏度检测病毒的新方法。当病毒病原体与这些抗体纳米管混合时,纳米管会迅速聚集在病毒周围形成网络结构。通过与负载染料的抗体纳米管在病毒周围聚集相关的荧光和光散射强度变化,检测到了痕量的病毒,如2型单纯疱疹病毒、腺病毒、痘苗病毒和B型流感病毒,检测限达到阿托摩尔级别。通过对混合物中两种不同病毒的浓度进行定量,证明了每种抗体纳米管对其靶向病毒具有高特异性。这种抗体纳米管检测法在与抗体纳米管孵育后30分钟内即可检测到靶向病原体。这种抗体纳米管检测法可以满足快速、灵敏地检测和定量病毒的迫切需求。

相似文献

1
Virus assay using antibody-functionalized peptide nanotubes.
Soft Matter. 2008;4(4):833-839. doi: 10.1039/b714470a. Epub 2008 Feb 22.
2
Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread.
J Virol. 2016 Apr 29;90(10):5163-5175. doi: 10.1128/JVI.00036-16. Print 2016 May 15.
3
High-throughput detection method for influenza virus.
J Vis Exp. 2012 Feb 4(60):3623. doi: 10.3791/3623.
4
A Cell-Based Capture Assay for Rapid Virus Detection.
Viruses. 2020 Oct 15;12(10):1165. doi: 10.3390/v12101165.
5
Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus.
Lab Chip. 2008 Aug;8(8):1319-24. doi: 10.1039/b801396a. Epub 2008 Jun 19.
8
Rapid diagnosis of respiratory viral infections by using a shell vial assay and monoclonal antibody pool.
J Clin Microbiol. 1992 Jun;30(6):1505-8. doi: 10.1128/jcm.30.6.1505-1508.1992.
9
A novel peptide ELISA for universal detection of antibodies to human H5N1 influenza viruses.
PLoS One. 2011;6(6):e20737. doi: 10.1371/journal.pone.0020737. Epub 2011 Jun 10.
10
A rapid and label-free platform for virus capture and identification from clinical samples.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):895-901. doi: 10.1073/pnas.1910113117. Epub 2019 Dec 27.

引用本文的文献

1
Bioaffinity detection of pathogens on surfaces.
J Ind Eng Chem. 2010 Mar 25;16(2):169-177. doi: 10.1016/j.jiec.2010.01.061. Epub 2010 Feb 19.
2
Assemblies of Functional Peptides and Their Applications in Building Blocks for Biosensors.
Adv Funct Mater. 2011 Mar 22;21(6):1018-1026. doi: 10.1002/adfm.201001419. Epub 2011 Mar 1.
3
Label-free pathogen detection with sensor chips assembled from Peptide nanotubes.
Angew Chem Int Ed Engl. 2008;47(50):9752-5. doi: 10.1002/anie.200804299.

本文引用的文献

1
Peptide-Based Nanotubes and Their Applications in Bionanotechnology.
Adv Mater. 2005 Sep;17(17):2037-2050. doi: 10.1002/adma.200401849. Epub 2005 Aug 29.
2
Counting single native biomolecules and intact viruses with color-coded nanoparticles.
Anal Chem. 2006 Feb 15;78(4):1061-70. doi: 10.1021/ac051801t.
5
Immuno-carbon nanotubes and recognition of pathogens.
Chembiochem. 2005 Apr;6(4):640-3. doi: 10.1002/cbic.200400337.
6
Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens.
Chem Commun (Camb). 2005 Feb 21(7):874-6. doi: 10.1039/b415015e. Epub 2004 Dec 17.
7
A time-resolved immunofluorometric assay for quantification of collectin-43.
J Immunol Methods. 2004 Dec;295(1-2):161-7. doi: 10.1016/j.jim.2004.10.004. Epub 2004 Nov 5.
8
Influenza: girding for disaster. Looking the pandemic in the eye.
Science. 2004 Oct 15;306(5695):392-4. doi: 10.1126/science.306.5695.392.
9
Detection of bacteria with carbohydrate-functionalized fluorescent polymers.
J Am Chem Soc. 2004 Oct 20;126(41):13343-6. doi: 10.1021/ja047936i.
10
Electrical detection of single viruses.
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22. doi: 10.1073/pnas.0406159101. Epub 2004 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验