Suppr超能文献

用于对映选择性溴化反应的构象可变肽基催化剂的分子动力学模拟

Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination.

作者信息

Yan Xin Cindy, Metrano Anthony J, Robertson Michael J, Abascal Nadia C, Tirado-Rives Julian, Miller Scott J, Jorgensen William L

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA.

出版信息

ACS Catal. 2018 Nov 2;8(11):9968-9979. doi: 10.1021/acscatal.8b03563. Epub 2018 Sep 13.

Abstract

It is widely accepted that structural rigidity is required to achieve high levels of asymmetric induction in catalytic, enantioselective reactions. This fundamental design principle often does not apply to highly selective catalytic peptides that often exhibit conformational heterogeneity. As a result, these complex systems are particularly challenging to study both experimentally and computationally. Herein, we utilize molecular dynamics simulations to investigate the role of conformational mobility on the reactivity and selectivity exhibited by a catalytic, β-turn-biased peptide in an atroposelective bromination reaction. By means of cluster analysis, multiple distinct conformers of the peptide and a catalyst-substrate complex were identified in the simulations, all of which were corroborated by experimental NMR measurements. The simulations also revealed that a shift in the conformational equilibrium of the peptidic catalyst occurs upon addition of substrate, and the degree of change varies among different substrates. On the basis of these data, we propose a correlation between the composition of the peptide conformational ensemble and its catalytic properties. Moreover, these findings highlight the importance of conformational dynamics in catalytic, asymmetric reactions mediated by oligopeptides, unveiled through high-level, state-of-the-art computational modeling.

摘要

人们普遍认为,在催化对映选择性反应中实现高水平的不对称诱导需要结构刚性。这一基本设计原则通常不适用于高度选择性的催化肽,这类肽往往表现出构象异质性。因此,研究这些复杂体系在实验和计算方面都极具挑战性。在此,我们利用分子动力学模拟来研究构象流动性对一种催化性、偏向β-转角的肽在阻转选择性溴化反应中所表现出的反应性和选择性的作用。通过聚类分析,在模拟中鉴定出了该肽和催化剂-底物复合物的多个不同构象异构体,所有这些都得到了实验核磁共振测量的证实。模拟还表明,加入底物后肽催化剂的构象平衡会发生变化,且变化程度因不同底物而异。基于这些数据,我们提出了肽构象集合体的组成与其催化性质之间的相关性。此外,这些发现突出了构象动力学在由寡肽介导的催化不对称反应中的重要性,这是通过高水平的、最先进的计算建模揭示出来的。

相似文献

1
Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination.
ACS Catal. 2018 Nov 2;8(11):9968-9979. doi: 10.1021/acscatal.8b03563. Epub 2018 Sep 13.
2
Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides.
ACS Catal. 2021 Apr 16;11(8):4395-4400. doi: 10.1021/acscatal.1c01097. Epub 2021 Mar 25.
3
Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity.
Acc Chem Res. 2019 Jan 15;52(1):199-215. doi: 10.1021/acs.accounts.8b00473. Epub 2018 Dec 11.
4
Structural studies of β-turn-containing peptide catalysts for atroposelective quinazolinone bromination.
Chem Commun (Camb). 2016 Apr 4;52(26):4816-9. doi: 10.1039/c6cc01428c. Epub 2016 Mar 10.
5
Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies.
J Am Chem Soc. 2018 Aug 29;140(34):10829-10838. doi: 10.1021/jacs.8b05459. Epub 2018 Aug 14.
6
Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences.
J Am Chem Soc. 2017 Jan 11;139(1):492-516. doi: 10.1021/jacs.6b11348. Epub 2016 Dec 28.
7
Development of Selective Peptide Catalysts with Secondary Structural Frameworks.
Acc Chem Res. 2017 Oct 17;50(10):2429-2439. doi: 10.1021/acs.accounts.7b00211. Epub 2017 Sep 5.
8
Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications.
Acc Chem Res. 2022 Sep 20;55(18):2562-2580. doi: 10.1021/acs.accounts.2c00465. Epub 2022 Sep 2.
9
Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones.
J Am Chem Soc. 2018 Jan 24;140(3):868-871. doi: 10.1021/jacs.7b11303. Epub 2018 Jan 10.

引用本文的文献

1
Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides.
Org Lett. 2024 Aug 16;26(32):6872-6877. doi: 10.1021/acs.orglett.4c02452. Epub 2024 Aug 5.
2
Structural Analysis of Non-native Peptide-Based Catalysts Using 2D NMR-Guided MD Simulations.
J Phys Chem A. 2023 Jul 6;127(26):5602-5608. doi: 10.1021/acs.jpca.3c03389. Epub 2023 Jun 22.
3
Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides.
ACS Catal. 2021 Apr 16;11(8):4395-4400. doi: 10.1021/acscatal.1c01097. Epub 2021 Mar 25.
5
Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes.
Angew Chem Int Ed Engl. 2021 Nov 8;60(46):24573-24581. doi: 10.1002/anie.202109694. Epub 2021 Oct 7.
6
Access to -stereogenic compounds desymmetrizing enantioselective bromination.
Chem Sci. 2021 Feb 12;12(12):4582-4587. doi: 10.1039/d0sc07008d.
7
Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms.
Chem Rev. 2020 Oct 28;120(20):11479-11615. doi: 10.1021/acs.chemrev.0c00523. Epub 2020 Sep 24.
8
Catalysis-Enabled Access to Cryptic Geldanamycin Oxides.
ACS Cent Sci. 2020 Mar 25;6(3):426-435. doi: 10.1021/acscentsci.0c00024. Epub 2020 Feb 24.
9
Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?
Synthesis (Stuttg). 2019 Mar;51(5):1021-1036. doi: 10.1055/s-0037-1611636. Epub 2019 Jan 8.
10
Terahertz Spectroscopy of Tetrameric Peptides.
J Phys Chem Lett. 2019 May 16;10(10):2624-2628. doi: 10.1021/acs.jpclett.9b01091. Epub 2019 May 8.

本文引用的文献

1
Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3-Amidocyclohexanones.
J Org Chem. 2018 Apr 20;83(8):4491-4504. doi: 10.1021/acs.joc.8b00207. Epub 2018 Apr 5.
2
Disulfide-Bridged Peptides That Mediate Enantioselective Cycloadditions through Thiyl Radical Catalysis.
Org Lett. 2018 Mar 16;20(6):1621-1625. doi: 10.1021/acs.orglett.8b00364. Epub 2018 Mar 5.
3
Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones.
J Am Chem Soc. 2018 Jan 24;140(3):868-871. doi: 10.1021/jacs.7b11303. Epub 2018 Jan 10.
4
Influence of the Trans/Cis Conformer Ratio on the Stereoselectivity of Peptidic Catalysts.
J Am Chem Soc. 2017 Nov 1;139(43):15356-15362. doi: 10.1021/jacs.7b06194. Epub 2017 Oct 18.
5
Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis.
Acc Chem Res. 2017 Mar 21;50(3):609-615. doi: 10.1021/acs.accounts.6b00613.
6
Catalyst-Controlled Site-Selective Bond Activation.
Acc Chem Res. 2017 Mar 21;50(3):549-555. doi: 10.1021/acs.accounts.6b00546.
8
Holy Grails for Computational Organic Chemistry and Biochemistry.
Acc Chem Res. 2017 Mar 21;50(3):539-543. doi: 10.1021/acs.accounts.6b00532.
9
Stereodynamic Quinone-Hydroquinone Molecules That Enantiomerize at sp-Carbon via Redox-Interconversion.
J Am Chem Soc. 2017 Oct 25;139(42):15239-15244. doi: 10.1021/jacs.7b09176. Epub 2017 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验