Suppr超能文献

利用计算设计的大环肽分离构象异构体以评估肽催化剂的动力学

Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides.

作者信息

Stone Elizabeth A, Hosseinzadeh Parisa, Craven Timothy W, Robertson Michael J, Han Yaodong, Hsieh Sheng-Ying, Metrano Anthony J, Baker David, Miller Scott J

机构信息

Department of Chemistry, Yale University, New Haven, CT, 06520, USA.

Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.

出版信息

ACS Catal. 2021 Apr 16;11(8):4395-4400. doi: 10.1021/acscatal.1c01097. Epub 2021 Mar 25.

Abstract

Studying the relationship between catalyst conformational dynamics and selectivity in an asymmetric reaction is a challenge. In this study, cyclic peptides were computationally designed to stabilize different ground state conformations of a highly effective, flexible tetrapeptide catalyst for the atroposelective bromination of -aryl quinazolinones. Through a combination of computational and experimental techniques, we have determined that dynamic movement of the lead catalyst plays a crucial role in achieving high enantioselectivity in the reaction of study. This approach may also serve as a valuable method for investigating the mechanism of other peptide-catalyzed transformations.

摘要

研究不对称反应中催化剂构象动力学与选择性之间的关系是一项挑战。在本研究中,通过计算设计了环状肽,以稳定一种高效、灵活的四肽催化剂的不同基态构象,用于 -芳基喹唑啉酮的阻转选择性溴化反应。通过计算和实验技术相结合,我们确定了先导催化剂的动态运动在该研究反应中实现高对映选择性方面起着关键作用。这种方法也可能成为研究其他肽催化转化机制的一种有价值的方法。

相似文献

1
Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides.
ACS Catal. 2021 Apr 16;11(8):4395-4400. doi: 10.1021/acscatal.1c01097. Epub 2021 Mar 25.
2
Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination.
ACS Catal. 2018 Nov 2;8(11):9968-9979. doi: 10.1021/acscatal.8b03563. Epub 2018 Sep 13.
3
Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones.
J Am Chem Soc. 2018 Jan 24;140(3):868-871. doi: 10.1021/jacs.7b11303. Epub 2018 Jan 10.
4
Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies.
J Am Chem Soc. 2018 Aug 29;140(34):10829-10838. doi: 10.1021/jacs.8b05459. Epub 2018 Aug 14.
5
Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity.
Acc Chem Res. 2019 Jan 15;52(1):199-215. doi: 10.1021/acs.accounts.8b00473. Epub 2018 Dec 11.
6
Conformational enantiodiscrimination for asymmetric construction of atropisomers.
Nat Commun. 2022 Aug 12;13(1):4735. doi: 10.1038/s41467-022-32432-8.
7
Enantioselective synthesis of 3-arylquinazolin-4(3H)-ones via peptide-catalyzed atroposelective bromination.
J Am Chem Soc. 2015 Sep 30;137(38):12369-77. doi: 10.1021/jacs.5b07726. Epub 2015 Sep 18.
8
Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?
Synthesis (Stuttg). 2019 Mar;51(5):1021-1036. doi: 10.1055/s-0037-1611636. Epub 2019 Jan 8.
9
Highly Efficient Asymmetric Hydrogenation Catalyzed by Iridium Complexes with Tridentate Chiral Spiro Aminophosphine Ligands.
Acc Chem Res. 2023 Feb 7;56(3):332-349. doi: 10.1021/acs.accounts.2c00764. Epub 2023 Jan 23.
10
Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts.
J Chem Inf Model. 2023 Nov 13;63(21):6629-6641. doi: 10.1021/acs.jcim.3c00393. Epub 2023 Oct 30.

引用本文的文献

1
Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides.
Org Lett. 2024 Aug 16;26(32):6872-6877. doi: 10.1021/acs.orglett.4c02452. Epub 2024 Aug 5.
3
Ratcheting synthesis.
Nat Rev Chem. 2024 Jan;8(1):8-29. doi: 10.1038/s41570-023-00558-y. Epub 2023 Dec 15.
4
Catalytic Asymmetric Hydrogen Atom Transfer: Enantioselective Hydroamination of Alkenes.
J Am Chem Soc. 2023 Jul 26;145(29):16118-16129. doi: 10.1021/jacs.3c04591. Epub 2023 Jul 11.
5
Structural Analysis of Non-native Peptide-Based Catalysts Using 2D NMR-Guided MD Simulations.
J Phys Chem A. 2023 Jul 6;127(26):5602-5608. doi: 10.1021/acs.jpca.3c03389. Epub 2023 Jun 22.
7
Conformational enantiodiscrimination for asymmetric construction of atropisomers.
Nat Commun. 2022 Aug 12;13(1):4735. doi: 10.1038/s41467-022-32432-8.
8
Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold.
J Am Chem Soc. 2022 Feb 9;144(5):2225-2232. doi: 10.1021/jacs.1c11542. Epub 2022 Jan 25.

本文引用的文献

1
Foldamer Catalysis.
J Am Chem Soc. 2020 Oct 14;142(41):17211-17223. doi: 10.1021/jacs.0c07347. Epub 2020 Sep 29.
2
Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms.
Chem Rev. 2020 Oct 28;120(20):11479-11615. doi: 10.1021/acs.chemrev.0c00523. Epub 2020 Sep 24.
3
Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?
Synthesis (Stuttg). 2019 Mar;51(5):1021-1036. doi: 10.1055/s-0037-1611636. Epub 2019 Jan 8.
4
Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination.
ACS Catal. 2018 Nov 2;8(11):9968-9979. doi: 10.1021/acscatal.8b03563. Epub 2018 Sep 13.
5
Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity.
Acc Chem Res. 2019 Jan 15;52(1):199-215. doi: 10.1021/acs.accounts.8b00473. Epub 2018 Dec 11.
6
Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies.
J Am Chem Soc. 2018 Aug 29;140(34):10829-10838. doi: 10.1021/jacs.8b05459. Epub 2018 Aug 14.
7
Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones.
J Am Chem Soc. 2018 Jan 24;140(3):868-871. doi: 10.1021/jacs.7b11303. Epub 2018 Jan 10.
8
Comprehensive computational design of ordered peptide macrocycles.
Science. 2017 Dec 15;358(6369):1461-1466. doi: 10.1126/science.aap7577.
9
Development of Selective Peptide Catalysts with Secondary Structural Frameworks.
Acc Chem Res. 2017 Oct 17;50(10):2429-2439. doi: 10.1021/acs.accounts.7b00211. Epub 2017 Sep 5.
10
Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.
Science. 2017 Jan 13;355(6321):162-166. doi: 10.1126/science.aal1875.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验