Suppr超能文献

一种用于记录胃电生理活动和进行高能量电刺激的微型可配置无线系统。

A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation.

作者信息

Wang Rui, Abukhalaf Zaid, Javan-Khoshkholgh Amir, Wang Tim H-H, Sathar Shameer, Du Peng, Angeli Timothy R, Cheng Leo K, O'Grady Greg, Paskaranandavadivel Niranchan, Farajidavar Aydin

机构信息

Integrated Medical Systems (IMS) Laboratory at the School of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.

Department of Surgery, University of Auckland, New Zealand.

出版信息

IEEE J Emerg Sel Top Circuits Syst. 2018 Jun;8(2):221-229. doi: 10.1109/JETCAS.2018.2812105. Epub 2018 Mar 5.

Abstract

The purpose of this paper is to develop and validate a miniature system that can wirelessly acquire gastric electrical activity called slow waves, and deliver high energy electrical pulses to modulate its activity. The system is composed of a front-end unit, and an external stationary back-end unit that is connected to a computer. The front-end unit contains a recording module with three channels, and a single-channel stimulation module. Commercial off-the-shelf components were used to develop front- and back-end units. A graphical user interface was designed in LabVIEW to process and display the recorded data in real-time, and store the data for off-line analysis. The system was successfully validated on bench top and in porcine models. The bench-top studies showed an appropriate frequency response for analog conditioning and digitization resolution to acquire gastric slow waves. The system was able to deliver electrical pulses at amplitudes up to 10 mA to a load smaller than 880 Ω. Simultaneous acquisition of the slow waves from all three channels was demonstrated . The system was able to modulate -by either suppressing or entraining- the slow wave activity. This study reports the first high-energy stimulator that can be controlled wirelessly and integrated into a gastric bioelectrical activity monitoring system. The system can be used for treating functional gastrointestinal disorders.

摘要

本文的目的是开发并验证一种微型系统,该系统能够无线采集被称为慢波的胃电活动,并输送高能量电脉冲来调节其活动。该系统由一个前端单元和一个连接到计算机的外部固定后端单元组成。前端单元包含一个具有三个通道的记录模块和一个单通道刺激模块。前端和后端单元的开发使用了商业现货组件。在LabVIEW中设计了一个图形用户界面,用于实时处理和显示记录的数据,并存储数据以供离线分析。该系统在台式实验和猪模型中均成功得到验证。台式研究表明,模拟调理和数字化分辨率具有合适的频率响应,能够采集胃慢波。该系统能够向小于880Ω的负载输送幅度高达10 mA的电脉冲。演示了从所有三个通道同时采集慢波。该系统能够通过抑制或夹带慢波活动来进行调节。本研究报告了首个可无线控制并集成到胃生物电活动监测系统中的高能量刺激器。该系统可用于治疗功能性胃肠疾病。

相似文献

1
A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation.
IEEE J Emerg Sel Top Circuits Syst. 2018 Jun;8(2):221-229. doi: 10.1109/JETCAS.2018.2812105. Epub 2018 Mar 5.
2
A Configurable Portable System for Ambulatory Monitoring of Gastric Bioelectrical Activity and Delivering Electrical Stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2829-2832. doi: 10.1109/EMBC.2018.8512979.
3
A 32-Channel Wireless Configurable System for Electrical Stimulation of the Stomach.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4178-4181. doi: 10.1109/EMBC.2018.8513369.
4
Monitoring and Modulating the Gastrointestinal Activity: A Wirelessly Programmable System with Impedance Measurement Capability.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1127-1130. doi: 10.1109/EMBC.2019.8857715.
5
A 32-channel wireless system for recording gastric electrical activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1971-1974. doi: 10.1109/EMBC.2016.7591110.
6
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Physiol Meas. 2012 Jun;33(6):N29-37. doi: 10.1088/0967-3334/33/6/N29.
7
The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
IEEE Trans Biomed Circuits Syst. 2015 Apr;9(2):248-58. doi: 10.1109/TBCAS.2015.2392555. Epub 2015 Mar 5.
9
Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity.
Physiol Meas. 2019 Mar 1;40(2):025011. doi: 10.1088/1361-6579/ab0668.
10
An Ultrasonically Powered Wireless System for In Vivo Gastric Slow-Wave Recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7064-7067. doi: 10.1109/EMBC.2019.8857243.

引用本文的文献

1
Optimization of pacing parameters to entrain slow wave activity in the pig jejunum.
Sci Rep. 2024 Mar 13;14(1):6038. doi: 10.1038/s41598-024-56256-2.
2
Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation.
Sci Robot. 2023 Apr 26;8(77):eade9676. doi: 10.1126/scirobotics.ade9676.
3
An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents.
Bioengineering (Basel). 2022 Oct 6;9(10):530. doi: 10.3390/bioengineering9100530.
4
Systematic review of small intestine pacing parameters for modulation of gut function.
Neurogastroenterol Motil. 2023 Jan;35(1):e14473. doi: 10.1111/nmo.14473. Epub 2022 Oct 4.
5
Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches.
Front Neurosci. 2021 Apr 22;15:645472. doi: 10.3389/fnins.2021.645472. eCollection 2021.
6
Electroceuticals in the Gastrointestinal Tract.
Trends Pharmacol Sci. 2020 Dec;41(12):960-976. doi: 10.1016/j.tips.2020.09.014. Epub 2020 Oct 27.
8
Enlightening the frontiers of neurogastroenterology through optogenetics.
Am J Physiol Gastrointest Liver Physiol. 2020 Sep 1;319(3):G391-G399. doi: 10.1152/ajpgi.00384.2019. Epub 2020 Aug 5.
10
Use of Bioelectronics in the Gastrointestinal Tract.
Cold Spring Harb Perspect Med. 2019 Sep 3;9(9):a034165. doi: 10.1101/cshperspect.a034165.

本文引用的文献

1
An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4820-4823. doi: 10.1109/EMBC.2016.7591806.
2
Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2689-92. doi: 10.1109/EMBC.2015.7318946.
3
Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
Neurogastroenterol Motil. 2015 Apr;27(4):580-5. doi: 10.1111/nmo.12515. Epub 2015 Jan 20.
4
Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons.
Clin Exp Pharmacol Physiol. 2014 Oct;41(10):854-62. doi: 10.1111/1440-1681.12288.
5
A closed loop feedback system for automatic detection and inhibition of mechano-nociceptive neural activity.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):478-87. doi: 10.1109/TNSRE.2012.2197220. Epub 2012 Jun 5.
7
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Physiol Meas. 2012 Jun;33(6):N29-37. doi: 10.1088/0967-3334/33/6/N29.
8
An endoscopic wireless gastrostimulator (with video).
Gastrointest Endosc. 2012 Feb;75(2):411-5, 415.e1. doi: 10.1016/j.gie.2011.09.052.
9
High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia.
Neurogastroenterol Motil. 2011 Sep;23(9):e345-55. doi: 10.1111/j.1365-2982.2011.01739.x. Epub 2011 Jun 30.
10
Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator.
Physiol Meas. 2011 Aug;32(8):1103-15. doi: 10.1088/0967-3334/32/8/007. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验