Wang Rui, Abukhalaf Zaid, Javan-Khoshkholgh Amir, Wang Tim H-H, Sathar Shameer, Du Peng, Angeli Timothy R, Cheng Leo K, O'Grady Greg, Paskaranandavadivel Niranchan, Farajidavar Aydin
Integrated Medical Systems (IMS) Laboratory at the School of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.
Department of Surgery, University of Auckland, New Zealand.
IEEE J Emerg Sel Top Circuits Syst. 2018 Jun;8(2):221-229. doi: 10.1109/JETCAS.2018.2812105. Epub 2018 Mar 5.
The purpose of this paper is to develop and validate a miniature system that can wirelessly acquire gastric electrical activity called slow waves, and deliver high energy electrical pulses to modulate its activity. The system is composed of a front-end unit, and an external stationary back-end unit that is connected to a computer. The front-end unit contains a recording module with three channels, and a single-channel stimulation module. Commercial off-the-shelf components were used to develop front- and back-end units. A graphical user interface was designed in LabVIEW to process and display the recorded data in real-time, and store the data for off-line analysis. The system was successfully validated on bench top and in porcine models. The bench-top studies showed an appropriate frequency response for analog conditioning and digitization resolution to acquire gastric slow waves. The system was able to deliver electrical pulses at amplitudes up to 10 mA to a load smaller than 880 Ω. Simultaneous acquisition of the slow waves from all three channels was demonstrated . The system was able to modulate -by either suppressing or entraining- the slow wave activity. This study reports the first high-energy stimulator that can be controlled wirelessly and integrated into a gastric bioelectrical activity monitoring system. The system can be used for treating functional gastrointestinal disorders.
本文的目的是开发并验证一种微型系统,该系统能够无线采集被称为慢波的胃电活动,并输送高能量电脉冲来调节其活动。该系统由一个前端单元和一个连接到计算机的外部固定后端单元组成。前端单元包含一个具有三个通道的记录模块和一个单通道刺激模块。前端和后端单元的开发使用了商业现货组件。在LabVIEW中设计了一个图形用户界面,用于实时处理和显示记录的数据,并存储数据以供离线分析。该系统在台式实验和猪模型中均成功得到验证。台式研究表明,模拟调理和数字化分辨率具有合适的频率响应,能够采集胃慢波。该系统能够向小于880Ω的负载输送幅度高达10 mA的电脉冲。演示了从所有三个通道同时采集慢波。该系统能够通过抑制或夹带慢波活动来进行调节。本研究报告了首个可无线控制并集成到胃生物电活动监测系统中的高能量刺激器。该系统可用于治疗功能性胃肠疾病。
IEEE J Emerg Sel Top Circuits Syst. 2018-6
Annu Int Conf IEEE Eng Med Biol Soc. 2018-7
Annu Int Conf IEEE Eng Med Biol Soc. 2018-7
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Annu Int Conf IEEE Eng Med Biol Soc. 2016-8
IEEE Trans Biomed Circuits Syst. 2015-3-5
Physiol Meas. 2019-3-1
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Bioengineering (Basel). 2022-10-6
Neurogastroenterol Motil. 2023-1
Front Neurosci. 2021-4-22
Trends Pharmacol Sci. 2020-12
Am J Physiol Gastrointest Liver Physiol. 2020-8-5
Cold Spring Harb Perspect Med. 2019-9-3
Annu Int Conf IEEE Eng Med Biol Soc. 2016-8
Annu Int Conf IEEE Eng Med Biol Soc. 2015-8
Neurogastroenterol Motil. 2015-4
Clin Exp Pharmacol Physiol. 2014-10
IEEE Trans Neural Syst Rehabil Eng. 2012-6-5
Gastrointest Endosc. 2012-2
Neurogastroenterol Motil. 2011-6-30