文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

食管癌中新兴的放射组学领域:当前证据与未来潜力。

The emerging field of radiomics in esophageal cancer: current evidence and future potential.

作者信息

van Rossum Peter S N, Xu Cai, Fried David V, Goense Lucas, Court Laurence E, Lin Steven H

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston (Texas), USA.

Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Transl Cancer Res. 2016 Aug;5(4):410-423. doi: 10.21037/tcr.2016.06.19.


DOI:10.21037/tcr.2016.06.19
PMID:30687593
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6343849/
Abstract

'Radiomics' is the name given to the emerging field of extracting additional information from standard medical images using advanced feature analysis. This innovative form of quantitative image analysis appears to have future potential for clinical practice in patients with esophageal cancer by providing an additional layer of information to the standard imaging assessment. There is a growing body of evidence suggesting that radiomics may provide incremental value for staging, predicting treatment response, and predicting survival in esophageal cancer, for which the current work-up has substantial limitations. This review outlines the available evidence and future potential for the application of radiomics in the management of patients with esophageal cancer. In addition, an overview of the current evidence on the importance of reproducibility of image features and the substantial influence of varying smoothing scales, quantization levels, and segmentation methods is provided.

摘要

“放射组学”是指利用先进的特征分析从标准医学图像中提取额外信息的新兴领域。这种创新的定量图像分析形式,通过为标准成像评估提供额外的信息层,似乎在食管癌患者的临床实践中具有未来潜力。越来越多的证据表明,放射组学可能为食管癌的分期、预测治疗反应和预测生存提供增量价值,而目前的检查方法存在很大局限性。这篇综述概述了放射组学在食管癌患者管理中应用的现有证据和未来潜力。此外,还概述了关于图像特征可重复性的重要性以及不同平滑尺度、量化水平和分割方法的重大影响的当前证据。

相似文献

[1]
The emerging field of radiomics in esophageal cancer: current evidence and future potential.

Transl Cancer Res. 2016-8

[2]
PET radiomics in lung cancer: advances and translational challenges.

EJNMMI Phys. 2024-10-3

[3]
CT radiomics and PET radiomics: ready for clinical implementation?

Q J Nucl Med Mol Imaging. 2019-12

[4]
Radiomics: an overview in lung cancer management-a narrative review.

Ann Transl Med. 2020-9

[5]
[Radiological evaluation of advanced gastric cancer: from image to big data radiomics].

Zhonghua Wei Chang Wai Ke Za Zhi. 2018-10-25

[6]
"Radio-oncomics" : The potential of radiomics in radiation oncology.

Strahlenther Onkol. 2017-10

[7]
Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.

Br J Radiol. 2017-2

[8]
Beyond imaging: The promise of radiomics.

Phys Med. 2017-6

[9]
Radiomics in Lung Cancer from Basic to Advanced: Current Status and Future Directions.

Korean J Radiol. 2020-2

[10]
Rapid review: radiomics and breast cancer.

Breast Cancer Res Treat. 2018-2-2

引用本文的文献

[1]
Magnetic resonance imaging-based radiomics signature for predicting preoperative staging of esophageal cancer.

World J Radiol. 2025-8-28

[2]
Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D ?

Cancer Imaging. 2024-10-17

[3]
Radiomics to predict PNI in ESCC.

Abdom Radiol (NY). 2025-4

[4]
The role of FDG PET/CT radiomics in the prediction of pathological response to neoadjuvant treatment in patients with esophageal cancer.

Rep Pract Oncol Radiother. 2024-6-6

[5]
Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis.

BMC Med Imaging. 2024-6-12

[6]
A radiomics nomogram based on contrast-enhanced CT for preoperative prediction of Lymphovascular invasion in esophageal squamous cell carcinoma.

Front Oncol. 2023-7-3

[7]
Computed tomography-based radiomic analysis for predicting pathological response and prognosis after neoadjuvant chemotherapy in patients with locally advanced esophageal cancer.

Abdom Radiol (NY). 2023-8

[8]
A combined predicting model for benign esophageal stenosis after simultaneous integrated boost in esophageal squamous cell carcinoma patients (GASTO1072).

Front Oncol. 2022-12-22

[9]
Prognostic value of pre-therapeutic FDG-PET radiomic analysis in gastro-esophageal junction cancer.

Sci Rep. 2023-4-8

[10]
Prediction of distant metastasis in esophageal cancer using a radiomics-clinical model.

Eur J Med Res. 2022-12-3

本文引用的文献

[1]
The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

J Nucl Med. 2016-5

[2]
A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction.

Ann Oncol. 2016-4

[3]
Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction.

Phys Med Biol. 2016-1-21

[4]
Endoscopic biopsy and EUS for the detection of pathologic complete response after neoadjuvant chemoradiotherapy in esophageal cancer: a systematic review and meta-analysis.

Gastrointest Endosc. 2015-11-26

[5]
International Multicenter Study on the Impact of Extracapsular Lymph Node Involvement in Primary Surgery Adenocarcinoma of the Esophagus on Overall Survival and Staging Systems.

Ann Surg. 2015-11

[6]
Preoperative Chemoradiation in an Era of Suboptimal Clinical Staging.

JAMA Surg. 2016-3

[7]
Comparison of characteristics of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET during staging of esophageal squamous cell carcinoma.

Nucl Med Commun. 2015-12

[8]
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.

PLoS One. 2015-9-10

[9]
Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial.

Lancet Oncol. 2015-8-5

[10]
The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis.

Sci Rep. 2015-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索