Suppr超能文献

食管癌中新兴的放射组学领域:当前证据与未来潜力。

The emerging field of radiomics in esophageal cancer: current evidence and future potential.

作者信息

van Rossum Peter S N, Xu Cai, Fried David V, Goense Lucas, Court Laurence E, Lin Steven H

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston (Texas), USA.

Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Transl Cancer Res. 2016 Aug;5(4):410-423. doi: 10.21037/tcr.2016.06.19.

Abstract

'Radiomics' is the name given to the emerging field of extracting additional information from standard medical images using advanced feature analysis. This innovative form of quantitative image analysis appears to have future potential for clinical practice in patients with esophageal cancer by providing an additional layer of information to the standard imaging assessment. There is a growing body of evidence suggesting that radiomics may provide incremental value for staging, predicting treatment response, and predicting survival in esophageal cancer, for which the current work-up has substantial limitations. This review outlines the available evidence and future potential for the application of radiomics in the management of patients with esophageal cancer. In addition, an overview of the current evidence on the importance of reproducibility of image features and the substantial influence of varying smoothing scales, quantization levels, and segmentation methods is provided.

摘要

“放射组学”是指利用先进的特征分析从标准医学图像中提取额外信息的新兴领域。这种创新的定量图像分析形式,通过为标准成像评估提供额外的信息层,似乎在食管癌患者的临床实践中具有未来潜力。越来越多的证据表明,放射组学可能为食管癌的分期、预测治疗反应和预测生存提供增量价值,而目前的检查方法存在很大局限性。这篇综述概述了放射组学在食管癌患者管理中应用的现有证据和未来潜力。此外,还概述了关于图像特征可重复性的重要性以及不同平滑尺度、量化水平和分割方法的重大影响的当前证据。

相似文献

1
The emerging field of radiomics in esophageal cancer: current evidence and future potential.
Transl Cancer Res. 2016 Aug;5(4):410-423. doi: 10.21037/tcr.2016.06.19.
2
PET radiomics in lung cancer: advances and translational challenges.
EJNMMI Phys. 2024 Oct 3;11(1):81. doi: 10.1186/s40658-024-00685-5.
3
CT radiomics and PET radiomics: ready for clinical implementation?
Q J Nucl Med Mol Imaging. 2019 Dec;63(4):355-370. doi: 10.23736/S1824-4785.19.03192-3. Epub 2019 Sep 13.
4
Radiomics: an overview in lung cancer management-a narrative review.
Ann Transl Med. 2020 Sep;8(18):1191. doi: 10.21037/atm-20-4589.
5
[Radiological evaluation of advanced gastric cancer: from image to big data radiomics].
Zhonghua Wei Chang Wai Ke Za Zhi. 2018 Oct 25;21(10):1106-1112.
6
"Radio-oncomics" : The potential of radiomics in radiation oncology.
Strahlenther Onkol. 2017 Oct;193(10):767-779. doi: 10.1007/s00066-017-1175-0. Epub 2017 Jul 7.
7
Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.
Br J Radiol. 2017 Feb;90(1070):20160665. doi: 10.1259/bjr.20160665. Epub 2016 Dec 12.
8
Beyond imaging: The promise of radiomics.
Phys Med. 2017 Jun;38:122-139. doi: 10.1016/j.ejmp.2017.05.071. Epub 2017 Jun 7.
9
Radiomics in Lung Cancer from Basic to Advanced: Current Status and Future Directions.
Korean J Radiol. 2020 Feb;21(2):159-171. doi: 10.3348/kjr.2019.0630.
10
Rapid review: radiomics and breast cancer.
Breast Cancer Res Treat. 2018 Jun;169(2):217-229. doi: 10.1007/s10549-018-4675-4. Epub 2018 Feb 2.

引用本文的文献

1
3
Radiomics to predict PNI in ESCC.
Abdom Radiol (NY). 2025 Apr;50(4):1475-1487. doi: 10.1007/s00261-024-04562-8. Epub 2024 Sep 23.
4
The role of FDG PET/CT radiomics in the prediction of pathological response to neoadjuvant treatment in patients with esophageal cancer.
Rep Pract Oncol Radiother. 2024 Jun 6;29(2):211-218. doi: 10.5603/rpor.99906. eCollection 2024.
10
Prediction of distant metastasis in esophageal cancer using a radiomics-clinical model.
Eur J Med Res. 2022 Dec 3;27(1):272. doi: 10.1186/s40001-022-00877-8.

本文引用的文献

3
Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction.
Phys Med Biol. 2016 Jan 21;61(2):906-22. doi: 10.1088/0031-9155/61/2/906. Epub 2016 Jan 7.
6
Preoperative Chemoradiation in an Era of Suboptimal Clinical Staging.
JAMA Surg. 2016 Mar;151(3):245-6. doi: 10.1001/jamasurg.2015.4047.
8
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.
PLoS One. 2015 Sep 10;10(9):e0137036. doi: 10.1371/journal.pone.0137036. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验