Chow Ryan, Hashemi Javad, Torbey Sami, Siu Johnny, Glover Benedict, Baranchuk Adrian M, Abdollah Hoshiar, Simpson Christopher, Akl Selim, Redfearn Damian P
Queen's University, Kingston, Ontario, Canada.
Kingston Health Sciences Centre, Kingston, Ontario, Canada.
Ann Noninvasive Electrocardiol. 2019 May;24(3):e12629. doi: 10.1111/anec.12629. Epub 2019 Jan 28.
Current noninvasive risk stratification methods offer limited prediction of arrhythmic events when selecting patients for ICD implantation. Our laboratory has recently developed a signal processing metric called Layered Symbolic Decomposition frequency (LSDf) that quantifies the percentage of hidden QRS wave frequency components in signal-averaged ECG (SAECG) recordings. The purpose of this pilot study was to determine whether LSDf can be predictive of ventricular arrhythmia or death in an ICD patient cohort.
Fifty-two ICD patients were recruited from 2008 to 2009. These were followed for a mean of 8.5 ± 0.4 years for the primary outcome of first appropriately treated ventricular arrhythmia (VT/VF) or death. Thirty-four subjects met the primary outcome. LSDf was significantly lower, and 12-lead QRS duration was significantly greater in patients meeting the primary outcome (12.14 ± 3.97% vs. 16.45 ± 3.73%; p = 0.001) and (111.59 ± 14.96 ms vs. 97.69 ± 13.51 ms; p = 0.012) respectively. A 13.25% LSDf threshold (0.74 sensitivity and 0.85 specificity) was selected based on an ROC curve. Kaplan-Meier survival analysis was conducted; patients above the 13.25% threshold demonstrated significantly better survival outcomes (log-rank p < 0.001). In Cox multivariate regression analysis, the LSDf threshold (13.25%) was compared to LVEF (28.5%), 12-lead QRSd (100 ms), age, % male sex, NYHA classification, and antiarrhythmic usage. LSDf was a predictor of the primary outcome (p = 0.005) and an independent predictor for solely ventricular arrhythmia (p = 0.002).
Layered Symbolic Decomposition frequency analysis in SAECG recordings may be a viable predictor of negative ICD survival outcomes.
在为植入式心律转复除颤器(ICD)选择患者时,当前的非侵入性风险分层方法对心律失常事件的预测能力有限。我们实验室最近开发了一种名为分层符号分解频率(LSDf)的信号处理指标,用于量化信号平均心电图(SAECG)记录中隐藏的QRS波频率成分的百分比。这项初步研究的目的是确定LSDf是否能够预测ICD患者队列中的室性心律失常或死亡情况。
2008年至2009年招募了52名ICD患者。对这些患者进行了平均8.5±0.4年的随访,以观察首次适当治疗的室性心律失常(VT/VF)或死亡这一主要结局。34名受试者出现了主要结局。达到主要结局的患者中,LSDf显著更低,12导联QRS波时限显著更长(分别为12.14±3.97%对16.45±3.73%;p=0.001)以及(111.59±14.96毫秒对97.69±13.51毫秒;p=0.012)。根据ROC曲线选择了13.25%的LSDf阈值(灵敏度为0.74,特异性为0.85)。进行了Kaplan-Meier生存分析;高于13.25%阈值的患者显示出显著更好的生存结局(对数秩p<0.001)。在Cox多变量回归分析中,将LSDf阈值(13.25%)与左心室射血分数(LVEF,28.5%)、12导联QRSd(100毫秒)、年龄、男性比例、纽约心脏协会(NYHA)分级以及抗心律失常药物使用情况进行了比较。LSDf是主要结局的预测指标(p=0.005),并且是单纯室性心律失常的独立预测指标(p=0.002)。
SAECG记录中的分层符号分解频率分析可能是ICD患者不良生存结局的一个可行预测指标。