Suppr超能文献

光调节非光合 的生理机能。

Light Modulates the Physiology of Nonphototrophic .

机构信息

Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA

Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA.

出版信息

J Bacteriol. 2019 Apr 24;201(10). doi: 10.1128/JB.00740-18. Print 2019 May 15.

Abstract

Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater , which are ubiquitous in illuminated aquatic environments, to light. We found that without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers. Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.

摘要

光是一种能源和环境线索,在大多数表面环境中都有过剩的供应。在原核生物系统中,光合作用生物和光异养生物将光转化为能量的过程已经得到很好的理解,但是光转化为信息以及细胞对该信息的反应仅在少数几种物种中得到了描述。我们的目标是探索淡水微生物对光的反应,这些微生物在光照的水生环境中无处不在。我们发现,缺乏功能性光合作用系统的微生物在光照下生长得更快,这可能是因为糖的运输和代谢在光照下被上调了。基于生长效应的作用光谱和对这一生长速率表型的三种淡水微生物基因组的比较,我们提出这些菌株中的光感受器是一种假定的 CryB 型隐色体。在白天能够感知光并上调碳水化合物运输的能力,使这些细胞能够将其最大有机碳吸收时间与初级生产者释放有机碳的时间相协调。阳光提供了位置和时间的信息。在阳光充足的水生环境中,初级生产者在白天会释放有机碳和氮以及其他生长因子。淡水微生物能够协调有机碳的吸收和利用与光合作用产物的生产,使它们能够在白天更有效地生长,这使它们相对于那些持续产生碳水化合物转运蛋白的异养生物具有竞争优势,因为持续产生碳水化合物转运蛋白在能量上是昂贵的,或者只有在检测到底物后才产生转运蛋白,这会延迟它们的反应。了解光如何提示有机碳的运输及其转化为生物量,是理解碳循环内的生化机制、通过它的通量以及光增强生长的各种机制的关键。

相似文献

1
Light Modulates the Physiology of Nonphototrophic .光调节非光合 的生理机能。
J Bacteriol. 2019 Apr 24;201(10). doi: 10.1128/JB.00740-18. Print 2019 May 15.
8
Genome editing in ubiquitous freshwater Actinobacteria.普遍存在的淡水放线菌中的基因组编辑。
Appl Environ Microbiol. 2024 Nov 20;90(11):e0086524. doi: 10.1128/aem.00865-24. Epub 2024 Oct 16.
10
Bacteria "Read" Light To Gain a Competitive Advantage.细菌“读取”光线以获得竞争优势。
J Bacteriol. 2019 Apr 24;201(10). doi: 10.1128/JB.00082-19. Print 2019 May 15.

引用本文的文献

1
Physical communication pathways in bacteria: an extra layer to quorum sensing.细菌中的物理通讯途径:群体感应的额外层面
Biophys Rev. 2025 Mar 4;17(2):667-685. doi: 10.1007/s12551-025-01290-1. eCollection 2025 Apr.
2
Genome editing in ubiquitous freshwater Actinobacteria.普遍存在的淡水放线菌中的基因组编辑。
Appl Environ Microbiol. 2024 Nov 20;90(11):e0086524. doi: 10.1128/aem.00865-24. Epub 2024 Oct 16.

本文引用的文献

9
UniProt: the universal protein knowledgebase.通用蛋白质知识库:UniProt
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验