Suppr超能文献

利用功能宏基因组学发现了一个独特的丰富的微生物视紫红质群体。

A distinct abundant group of microbial rhodopsins discovered using functional metagenomics.

机构信息

Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel.

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.

出版信息

Nature. 2018 Jun;558(7711):595-599. doi: 10.1038/s41586-018-0225-9. Epub 2018 Jun 20.

Abstract

Many organisms capture or sense sunlight using rhodopsin pigments, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.

摘要

许多生物体利用视紫红质色素来捕捉或感知阳光,视紫红质色素是一种与膜结合的蛋白,能与视黄醛发色团结合。视紫红质由两种不同的蛋白家族组成,即 1 型(微生物视紫红质)和 2 型(动物视紫红质)。这两种家族具有相似的拓扑结构,包含七个跨膜螺旋,形成一个口袋,其中视黄醛以质子化的席夫碱与第七个跨膜螺旋上的赖氨酸共价结合。1 型和 2 型视紫红质彼此之间几乎没有或没有序列相似性,这是由于它们与共同祖先的广泛分歧或相似结构的趋同进化。在这里,我们报告了一种以前未知的、多样化的视紫红质家族——我们称之为 Heliorhodopsins,我们使用功能宏基因组学来识别它,它与 1 型视紫红质有很远的关系。Heliorhodopsins 的 N 末端朝向细胞质,嵌入在膜中,这种取向与 1 型或 2 型视紫红质相反。Heliorhodopsins 表现出超过一秒的光循环,这表明它们具有光感觉活性。与 1 型和 2 型视紫红质一样,Heliorhodopsin 的光循环伴随着视黄醛异构化和质子转移,但蛋白质中从未释放出过质子,即使是短暂的。Heliorhodopsins 丰富且分布广泛;我们在古菌、细菌、真核生物及其病毒中检测到了它们。我们的发现揭示了一种以前未知的光感应视紫红质家族,它在微生物世界中广泛存在。

相似文献

2
Mutation Study of Heliorhodopsin 48C12.嗜盐视紫红质48C12的突变研究
Biochemistry. 2018 Aug 21;57(33):5041-5049. doi: 10.1021/acs.biochem.8b00637. Epub 2018 Aug 6.
3
Microbial Rhodopsins: The Last Two Decades.微生物视紫红质:过去二十年
Annu Rev Microbiol. 2021 Oct 8;75:427-447. doi: 10.1146/annurev-micro-031721-020452. Epub 2021 Aug 3.
4
Crystal structure of heliorhodopsin.赫氏紫膜质体的晶体结构。
Nature. 2019 Oct;574(7776):132-136. doi: 10.1038/s41586-019-1604-6. Epub 2019 Sep 25.
8
High-resolution structural insights into the heliorhodopsin family.高速分辨结构研究视紫红质家族。
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4131-4141. doi: 10.1073/pnas.1915888117. Epub 2020 Feb 7.
9
The Evolutionary Kaleidoscope of Rhodopsins.视紫红质的进化万花筒。
mSystems. 2022 Oct 26;7(5):e0040522. doi: 10.1128/msystems.00405-22. Epub 2022 Sep 19.

引用本文的文献

1
A genomic view of Earth's biomes.地球生物群落的基因组视角。
Nat Rev Genet. 2025 Sep 15. doi: 10.1038/s41576-025-00888-1.
2
Salinity-driven niche differentiation within the aquatic Luna-1 subcluster.水生Luna-1亚群中盐度驱动的生态位分化。
ISME Commun. 2025 Jul 16;5(1):ycaf122. doi: 10.1093/ismeco/ycaf122. eCollection 2025 Jan.

本文引用的文献

2
Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.微生物视紫红质:多样性、机制及光遗传学应用
Annu Rev Biochem. 2017 Jun 20;86:845-872. doi: 10.1146/annurev-biochem-101910-144233. Epub 2017 Mar 9.
6
A natural light-driven inward proton pump.自然光驱动的内向质子泵。
Nat Commun. 2016 Nov 17;7:13415. doi: 10.1038/ncomms13415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验