Suppr超能文献

单倍型关联研究中通过分层连锁不平衡进行的强大检验。

Powerful testing via hierarchical linkage disequilibrium in haplotype association studies.

作者信息

Balliu Brunilda, Houwing-Duistermaat Jeanine J, Böhringer Stefan

机构信息

Department of Biomathematics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.

School of Mathematics, University of Leeds, Leeds, UK.

出版信息

Biom J. 2019 May;61(3):747-768. doi: 10.1002/bimj.201800053. Epub 2019 Jan 28.

Abstract

Marginal tests based on individual SNPs are routinely used in genetic association studies. Studies have shown that haplotype-based methods may provide more power in disease mapping than methods based on single markers when, for example, multiple disease-susceptibility variants occur within the same gene. A limitation of haplotype-based methods is that the number of parameters increases exponentially with the number of SNPs, inducing a commensurate increase in the degrees of freedom and weakening the power to detect associations. To address this limitation, we introduce a hierarchical linkage disequilibrium model for disease mapping, based on a reparametrization of the multinomial haplotype distribution, where every parameter corresponds to the cumulant of each possible subset of a set of loci. This hierarchy present in the parameters enables us to employ flexible testing strategies over a range of parameter sets: from standard single SNP analyses through the full haplotype distribution tests, reducing degrees of freedom and increasing the power to detect associations. We show via extensive simulations that our approach maintains the type I error at nominal level and has increased power under many realistic scenarios, as compared to single SNP and standard haplotype-based studies. To evaluate the performance of our proposed methodology in real data, we analyze genome-wide data from the Wellcome Trust Case-Control Consortium.

摘要

基于单个单核苷酸多态性(SNP)的边际检验在基因关联研究中经常使用。研究表明,例如当多个疾病易感性变异出现在同一基因内时,基于单倍型的方法在疾病定位中可能比基于单个标记的方法更具效力。基于单倍型的方法的一个局限性是,参数数量随着SNP数量呈指数增长,导致自由度相应增加,并削弱了检测关联的效力。为了解决这一局限性,我们基于多项单倍型分布的重新参数化,引入了一种用于疾病定位的分层连锁不平衡模型,其中每个参数对应一组位点的每个可能子集的累积量。参数中存在的这种层次结构使我们能够在一系列参数集上采用灵活测试策略:从标准的单个SNP分析到完整的单倍型分布测试,减少自由度并提高检测关联的效力。我们通过广泛的模拟表明,与单个SNP和基于标准单倍型的研究相比,我们的方法在名义水平上保持了I型错误,并在许多现实情况下提高了效力。为了评估我们提出的方法在实际数据中的性能,我们分析了来自威康信托病例对照协会的全基因组数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9467/6637384/8489c3fddbfd/BIMJ-61-747-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验