Suppr超能文献

在脑机接口环境中训练听觉事件相关电位任务的神经机制。

Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.

机构信息

School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom.

Institute of Psychology, University of Würzburg, Würzburg, Germany.

出版信息

Hum Brain Mapp. 2019 Jun 1;40(8):2399-2412. doi: 10.1002/hbm.24531. Epub 2019 Jan 28.

Abstract

Effective use of brain-computer interfaces (BCIs) typically requires training. Improved understanding of the neural mechanisms underlying BCI training will facilitate optimisation of BCIs. The current study examined the neural mechanisms related to training for electroencephalography (EEG)-based communication with an auditory event-related potential (ERP) BCI. Neural mechanisms of training in 10 healthy volunteers were assessed with functional magnetic resonance imaging (fMRI) during an auditory ERP-based BCI task before (t1) and after (t5) three ERP-BCI training sessions outside the fMRI scanner (t2, t3, and t4). Attended stimuli were contrasted with ignored stimuli in the first-level fMRI data analysis (t1 and t5); the training effect was verified using the EEG data (t2-t4); and brain activation was contrasted before and after training in the second-level fMRI data analysis (t1 vs. t5). Training increased the communication speed from 2.9 bits/min (t2) to 4 bits/min (t4). Strong activation was found in the putamen, supplementary motor area (SMA), and superior temporal gyrus (STG) associated with attention to the stimuli. Training led to decreased activation in the superior frontal gyrus and stronger haemodynamic rebound in the STG and supramarginal gyrus. The neural mechanisms of ERP-BCI training indicate improved stimulus perception and reduced mental workload. The ERP task used in the current study showed overlapping activations with a motor imagery based BCI task from a previous study on the neural mechanisms of BCI training in the SMA and putamen. This suggests commonalities between the neural mechanisms of training for both BCI paradigms.

摘要

有效的脑机接口(BCI)使用通常需要训练。对BCI 训练所涉及的神经机制的深入理解将有助于优化 BCI。本研究使用功能磁共振成像(fMRI)来检查与基于听觉事件相关电位(ERP)的脑电(EEG)通信的训练相关的神经机制,该研究在 fMRI 扫描仪外进行了三次基于 ERP 的 BCI 训练(t2、t3 和 t4)前后(t1 和 t5),对 10 名健康志愿者进行了 fMRI 扫描。在第一级 fMRI 数据分析中(t1 和 t5),对注意力刺激和忽略刺激进行对比;在第二级 fMRI 数据分析中(t1 与 t5),对训练前后的大脑激活进行对比。训练将通讯速度从 2.9 位/分钟(t2)提高到 4 位/分钟(t4)。与注意刺激相关的强烈激活出现在壳核、辅助运动区(SMA)和颞上回(STG)。训练导致额上回的激活减少,而 STG 和缘上回的血液动力学反弹更强。ERP-BCI 训练的神经机制表明刺激感知能力得到提高,心理工作量减少。当前研究中使用的 ERP 任务与之前关于 SMA 和壳核中 BCI 训练神经机制的研究中基于运动想象的 BCI 任务的重叠激活,表明两种 BCI 范式的训练神经机制存在共性。

相似文献

1
Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
Hum Brain Mapp. 2019 Jun 1;40(8):2399-2412. doi: 10.1002/hbm.24531. Epub 2019 Jan 28.
3
Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
Clin Neurophysiol. 2013 Jan;124(1):83-90. doi: 10.1016/j.clinph.2012.06.004. Epub 2012 Jul 31.
4
5
Training and testing ERP-BCIs under different mental workload conditions.
J Neural Eng. 2016 Feb;13(1):016007. doi: 10.1088/1741-2560/13/1/016007. Epub 2015 Dec 10.
7
A novel hybrid auditory BCI paradigm combining ASSR and P300.
J Neurosci Methods. 2017 Mar 1;279:44-51. doi: 10.1016/j.jneumeth.2017.01.011. Epub 2017 Jan 18.
8
Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
Neuroimage. 2016 Jul 1;134:475-485. doi: 10.1016/j.neuroimage.2016.04.030. Epub 2016 Apr 19.
9
30+ years of P300 brain-computer interfaces.
Psychophysiology. 2020 Jul;57(7):e13569. doi: 10.1111/psyp.13569. Epub 2020 Apr 17.
10
Cognitive MMN and P300 in mild cognitive impairment and Alzheimer's disease: A high density EEG-3D vector field tomography approach.
Brain Res. 2016 Oct 1;1648(Pt A):425-433. doi: 10.1016/j.brainres.2016.07.043. Epub 2016 Jul 30.

引用本文的文献

1
Shared subcortical arousal systems across sensory modalities during transient modulation of attention.
Neuroimage. 2025 May 15;312:121224. doi: 10.1016/j.neuroimage.2025.121224. Epub 2025 Apr 16.
2
Shared subcortical arousal systems across sensory modalities during transient modulation of attention.
bioRxiv. 2024 Oct 1:2024.09.16.613316. doi: 10.1101/2024.09.16.613316.
3
A delayed matching task-based study on action sequence of motor imagery.
Cogn Neurodyn. 2024 Aug;18(4):1593-1607. doi: 10.1007/s11571-023-10030-8. Epub 2023 Nov 9.
4
Target of selective auditory attention can be robustly followed with MEG.
Sci Rep. 2023 Jul 6;13(1):10959. doi: 10.1038/s41598-023-37959-4.
5
Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier.
Brain Comput Interfaces (Abingdon). 2022;9(2):69-101. doi: 10.1080/2326263X.2021.2009654. Epub 2022 Feb 8.
6
Identifying potential training factors in a vibrotactile P300-BCI.
Sci Rep. 2022 Aug 17;12(1):14006. doi: 10.1038/s41598-022-18088-w.
7
Progress in Brain Computer Interface: Challenges and Opportunities.
Front Syst Neurosci. 2021 Feb 25;15:578875. doi: 10.3389/fnsys.2021.578875. eCollection 2021.

本文引用的文献

1
Comparison of Four Control Methods for a Five-Choice Assistive Technology.
Front Hum Neurosci. 2018 Jun 6;12:228. doi: 10.3389/fnhum.2018.00228. eCollection 2018.
2
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance.
Front Neurosci. 2018 May 14;12:307. doi: 10.3389/fnins.2018.00307. eCollection 2018.
3
Distinguishing Anesthetized from Awake State in Patients: A New Approach Using One Second Segments of Raw EEG.
Front Hum Neurosci. 2018 Feb 20;12:40. doi: 10.3389/fnhum.2018.00040. eCollection 2018.
4
Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses.
J Neurosci. 2017 Nov 8;37(45):10882-10893. doi: 10.1523/JNEUROSCI.1838-17.2017.
6
Definition and characterization of an extended multiple-demand network.
Neuroimage. 2018 Jan 15;165:138-147. doi: 10.1016/j.neuroimage.2017.10.020. Epub 2017 Oct 13.
7
Affective Stimuli for an Auditory P300 Brain-Computer Interface.
Front Neurosci. 2017 Sep 21;11:522. doi: 10.3389/fnins.2017.00522. eCollection 2017.
9
Designing Guiding Systems for Brain-Computer Interfaces.
Front Hum Neurosci. 2017 Jul 31;11:396. doi: 10.3389/fnhum.2017.00396. eCollection 2017.
10
Estimated Prevalence of the Target Population for Brain-Computer Interface Neurotechnology in the Netherlands.
Neurorehabil Neural Repair. 2017 Jul;31(7):677-685. doi: 10.1177/1545968317714577. Epub 2017 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验