Departments of Brain and Behavioral Sciences.
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy.
J Neurosci. 2019 Mar 27;39(13):2383-2397. doi: 10.1523/JNEUROSCI.1985-18.2019. Epub 2019 Jan 29.
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD. This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.
自闭症谱系障碍(ASD)是普遍存在的神经发育障碍,通常涉及影响突触机制的突变。最近,小脑在 ASD 中的作用已被提出,但潜在的功能改变仍不清楚。我们研究了 IB2(胰岛脑-2)KO 雌雄小鼠的单个神经元和微电路特性。IB2 基因(chr22q13.3 末端区域)缺失发生在几乎所有的 Phelan-McDermid 综合征病例中,导致自闭症症状和运动技能获得的严重延迟。IB2 KO 颗粒细胞表现出更大的 NMDA 受体介导的电流和增强的内在兴奋性,提高了兴奋性/抑制性平衡。此外,颗粒层对苔藓纤维反应的空间组织从“墨西哥帽”转变为“烟囱帽”形态,核心区的兴奋增强,周围区的抑制减弱。最后,长时程突触可塑性的大小和扩展显著增加。这些结果首次表明,过度兴奋和过度增生会破坏 IB2 KO 小鼠颗粒层中的信号传递,支持小脑在 ASD 发病机制中的作用。本文首次显示了自闭症谱系障碍小鼠模型(IB2(胰岛脑-2)KO)小脑颗粒层的一组复杂改变。小鼠中的 IB2 KO 模拟了人类 Phelan-McDermid 综合征中相应基因的缺失。这里报道的变化集中在 NMDA 受体的过度活跃、过度增生和过度兴奋上。这些反过来又增加了兴奋性/抑制性平衡,并改变了在颗粒层中出现的对苔藓纤维活动的中心/周围结构的形状。这些结果支持了最近提出的小脑参与自闭症谱系障碍的理论。