Suppr超能文献

通过碳电极上的电聚合核黄素界面促进生物电催化的双向细胞外电子转移

Promoting Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode.

作者信息

Zou Long, Wu Xian, Huang Yunhong, Ni Haiyan, Long Zhong-Er

机构信息

College of Life Science, Jiangxi Normal University, Nanchang, China.

出版信息

Front Microbiol. 2019 Jan 15;9:3293. doi: 10.3389/fmicb.2018.03293. eCollection 2018.

Abstract

The extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear. In this work, we investigated the enhancement of electrochemically polymerized riboflavin interface on the bidirectional EET of CN32 for boosting bioelectrocatalytic ability. An optimal polyriboflavin functionalized carbon cloth electrode achieved about 4.3-fold output power density (∼707 mW/m) in microbial fuel cells and 3.7-fold cathodic current density (∼0.78 A/m) for fumarate reduction in three-electrode cells compared to the control, showing great increases in both outward and inward EET rates. Likewise, the improvement was observed for polyriboflavin-functionalized graphene electrodes. Through comparison between wild-type strain and outer-membrane cytochrome (MtrC/UndA) mutant, the significant improvements were suggested to be attributed to the fast interfacial electron exchange between the polyriboflavin interface with flexible electrochemical activity and good biocompatibility and the outer-membrane cytochromes of the strain. This work not only provides an effective approach to boost microbial electrocatalysis for energy conversion, but also offers a new demonstration of broadening the applications of riboflavin-functionalized interface since the widespread contribution of riboflavin in various microbial EET pathways together with the facile electropolymerization approach.

摘要

细胞外电子转移(EET)将电活性微生物的细胞内代谢与外部电子供体/受体相连,是开发各种微生物电化学技术的基础。对于特定的微生物电化学装置,由于直接且密切的生物-非生物相互作用,所使用电极材料的表面化学性质在EET过程中起着至关重要的作用。用氧化还原介质对电极表面进行功能修饰已被认为是促进EET的有效方法,但其潜在机制仍不清楚。在这项工作中,我们研究了电化学聚合核黄素界面增强CN32双向EET以提高生物电催化能力的情况。与对照相比,优化的聚核黄素功能化碳布电极在微生物燃料电池中实现了约4.3倍的输出功率密度(707 mW/m),在三电极电池中用于富马酸还原的阴极电流密度提高了3.7倍(0.78 A/m),表明向外和向内的EET速率均有大幅提高。同样,聚核黄素功能化石墨烯电极也观察到了这种改善。通过野生型菌株与外膜细胞色素(MtrC/UndA)突变体之间的比较,表明显著改善归因于具有灵活电化学活性和良好生物相容性的聚核黄素界面与菌株外膜细胞色素之间的快速界面电子交换。这项工作不仅为促进微生物电催化进行能量转换提供了一种有效方法,还为拓宽核黄素功能化界面的应用提供了新的例证,因为核黄素在各种微生物EET途径中广泛存在,且电聚合方法简便易行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验