Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, P. R. China.
Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
Adv Sci (Weinh). 2023 Mar;10(9):e2206622. doi: 10.1002/advs.202206622. Epub 2023 Jan 29.
Shewanella oneidensis is able to carry out extracellular electron transfer (EET), although its EET efficiency is largely limited by low flavin concentrations, poor biofilm forming-ability, and weak biofilm conductivity. After identifying an important role for riboflavin (RF) in EET via in vitro experiments, the synthesis of RF is directed to 837.74 ± 11.42 µm in S. oneidensis. Molecular dynamics simulation reveals RF as a cofactor that binds strongly to the outer membrane cytochrome MtrC, which is correspondingly further overexpressed to enhance EET. Then the cell division inhibitor sulA, which dramatically enhanced the thickness and biomass of biofilm increased by 155% and 77%, respectively, is overexpressed. To reduce reaction overpotential due to biofilm thickness, a spider-web-like hybrid biofilm comprising RF, multiwalled carbon nanotubes (MWCNTs), and graphene oxide (GO) with adsorption-optimized elongated S. oneidensis, achieve a 77.83-fold increase in power (3736 mW m ) relative to MR-1 and dramatically reduce the charge-transfer resistance and boosted biofilm electroactivity. This work provides an elegant paradigm to boost EET based on a synthetic biology strategy and materials science strategy, opens up further opportunities for other electrogenic bacteria.
希瓦氏菌能够进行细胞外电子传递 (EET),尽管其 EET 效率在很大程度上受到低黄素浓度、较差的生物膜形成能力和较弱的生物膜导电性的限制。通过体外实验确定核黄素 (RF) 在 EET 中的重要作用后,我们将 RF 的合成导向 837.74 ± 11.42 µm 的希瓦氏菌。分子动力学模拟表明 RF 是一种与外膜细胞色素 MtrC 结合紧密的辅因子,相应地进一步过表达以增强 EET。然后过表达细胞分裂抑制剂 sulA,其分别显著增加生物膜的厚度和生物量,增加了 155%和 77%。为了降低由于生物膜厚度引起的反应过电位,构建了一种由 RF、多壁碳纳米管 (MWCNTs) 和氧化石墨烯 (GO) 组成的蜘蛛网状混合生物膜,其中吸附优化的拉长希瓦氏菌,与 MR-1 相比,功率增加了 77.83 倍 (3736 mW m ),并显著降低了电荷转移电阻并增强了生物膜的电活性。这项工作为基于合成生物学策略和材料科学策略的 EET 提供了一个优雅的范例,为其他发电细菌开辟了更多的机会。