Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
Adv Sci (Weinh). 2024 Oct;11(39):e2407599. doi: 10.1002/advs.202407599. Epub 2024 Aug 19.
Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr reduction, and CO reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.
电化学生物(EAMs)与电极之间的界面电子转移是各种具有不同应用的生物电化学系统的基础。然而,由于跨膜和细胞-电极界面电子转移电阻较高,生物-电极界面的电子转移速率仍然较低。在此,采用模块化工程策略构建了一种 Shewanella oneidensis-碳纤维毡生物杂化电极,该电极表面修饰有细菌纤维素气凝胶-电聚合蒽醌,以提高细胞-电极界面的电子转移。首先,构建了异源核黄素合成和分泌途径,以增加黄素介导的跨膜电子转移。其次,通过蛋白质工程策略筛选和优化了外膜 c-Cyts OmcF,以加速基于接触的跨膜电子转移。最后,构建了一种细菌纤维素气凝胶和电聚合蒽醌修饰的 S. oneidensis-碳纤维毡生物杂化电极,以促进界面电子转移。结果表明,内阻降低至 42 Ω,比野生型(WT)S. oneidensis MR-1 低 480.8 倍。最大功率密度达到 4286.6±202.1 mW m,比 WT 高 72.8 倍。最后,该工程化的生物杂化电极在生物电能收集、Cr 还原和 CO 还原方面表现出优异的能力。本研究表明,增强跨膜和细胞-电极界面电子转移是提高电化学生物细胞胞外电子转移的一种有前途的方法。