Suppr超能文献

牙形态局部扩散模型:基于新型自适应8连通牙龈组织和乳牙缺失的扩散模型用于牙科图像增强。

DentoMorph-LDMs: diffusion models based on novel adaptive 8-connected gum tissue and deciduous teeth loss for dental image augmentation.

作者信息

Marie Hanaa Salem, Elbaz Mostafa, Soliman Riham Sobhy, Elkhatib Amira Abdelhafeez

机构信息

Faculty of Artificial Intelligence, Delta University for Science and Technology, Gamasa, 35712, Egypt.

Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

Sci Rep. 2025 Jul 26;15(1):27268. doi: 10.1038/s41598-025-11955-2.

Abstract

Pediatric dental image analysis faces critical challenges in disease detection due to missing or corrupted pixel regions and the unique developmental characteristics of deciduous teeth, with current Latent Diffusion Models (LDMs) failing to preserve anatomical integrity during reconstruction of pediatric oral structures. We developed two novel biologically-inspired loss functions integrated within LDMs specifically designed for pediatric dental imaging: Gum-Adaptive Pixel Imputation (GAPI) utilizing adaptive 8-connected pixel neighborhoods that mimic pediatric gum tissue adaptive behavior, and Deciduous Transition-Based Reconstruction (DTBR) incorporating developmental stage awareness based on primary teeth transition patterns observed in children aged 2-12 years. These algorithms guide the diffusion process toward developmentally appropriate reconstructions through specialized loss functions that preserve structural continuity of deciduous dentition and age-specific anatomical features crucial for accurate pediatric diagnosis. Experimental validation on 2,255 pediatric dental images across six conditions (caries, calculus, gingivitis, tooth discoloration, ulcers, and hypodontia) demonstrated superior image generation performance with Inception Score of 9.87, Fréchet Inception Distance of 4.21, Structural Similarity Index of 0.952, and Peak Signal-to-Noise Ratio of 34.76, significantly outperforming eleven competing diffusion models. Pediatric disease detection using enhanced datasets achieved statistically significant improvements across five detection models: +0.0694 in mean Average Precision [95% CI: 0.0608-0.0780], + 0.0606 in Precision [0.0523-0.0689], + 0.0736 in Recall [0.0651-0.0821], and + 0.0678 in F1-Score [0.0597-0.0759] (all p < 0.0001), enabling pediatric dentists to detect early-stage caries, developmental anomalies, and eruption disorders with unprecedented accuracy. This framework revolutionizes pediatric dental diagnosis by providing pediatric dentists with AI-enhanced imaging tools that account for the unique biological characteristics of developing dentition, significantly improving early detection of oral diseases in children and establishing a foundation for age-specific dental AI applications that enhance clinical decision-making in pediatric dental practice.

摘要

由于像素区域缺失或损坏以及乳牙独特的发育特征,儿科牙科图像分析在疾病检测上面临严峻挑战,当前的潜在扩散模型(LDM)在重建儿科口腔结构时无法保持解剖学完整性。我们开发了两种新颖的、受生物学启发的损失函数,并将其集成到专门为儿科牙科成像设计的LDM中:牙龈自适应像素插补(GAPI)利用自适应8连通像素邻域来模拟儿科牙龈组织的自适应行为,以及基于乳牙过渡的重建(DTBR),它结合了基于对2至12岁儿童乳牙过渡模式观察到的发育阶段意识。这些算法通过专门的损失函数引导扩散过程朝着发育上合适的重建方向进行,这些损失函数保留了乳牙列的结构连续性以及对准确的儿科诊断至关重要的特定年龄解剖特征。对六种情况(龋齿、牙结石、牙龈炎、牙齿变色、溃疡和缺牙症)下的2255张儿科牙科图像进行的实验验证表明,生成的图像具有卓越的性能,Inception分数为9.87,Fréchet Inception距离为4.21,结构相似性指数为0.952,峰值信噪比为34.76,显著优于十一种竞争的扩散模型。使用增强数据集进行儿科疾病检测在五个检测模型上实现了具有统计学意义的改进:平均平均精度提高了0.0694 [95%置信区间:0.0608 - 0.0780],精度提高了0.0606 [0.0523 - 0.0689],召回率提高了0.0736 [0.0651 - 0.0821],F1分数提高了0.0678 [0.0597 - 0.0759](所有p < 0.0001),使儿科牙医能够以前所未有的准确性检测早期龋齿、发育异常和萌出障碍。该框架通过为儿科牙医提供人工智能增强的成像工具,彻底改变了儿科牙科诊断,这些工具考虑了发育中牙列的独特生物学特征,显著改善了儿童口腔疾病的早期检测,并为特定年龄的牙科人工智能应用奠定了基础,增强了儿科牙科实践中的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1494/12297657/0244bea51ee3/41598_2025_11955_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验