R&D Center, Ray, Seongnam, South Korea.
R&D Center, Ray, Seongnam, South Korea; Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea.
Comput Biol Med. 2021 May;132:104313. doi: 10.1016/j.compbiomed.2021.104313. Epub 2021 Mar 6.
Half-scan image reconstruction with Parker weighting can correct motion artifacts in dental CT images taken with a slow scan-based dental CT. Since the residual half-scan artifacts in the dental CT images appear much stronger than those in medical CT images, the artifacts often persist to the extent that they compromise the surface-rendered bone and tooth images computed from the dental CT images. We used a variation of generative adversarial network (GAN), so-called U-WGAN, to correct half-scan artifacts in dental CT images. For the generative network of GAN, we used a U-net structure of five stages to take advantage of its high computational efficiency. We trained the network using the Wasserstein loss function on the dental CT images of 40 patients. We tested the network with comparing its output images to the half-scan images corrected with other methods; Parker weighting and the other two popular GANs, that is, SRGAN and m-WGAN. For the quantitative comparison, we used the image quality metrics measuring the similarity of the corrected images to the full-scan images (reference images) and the noise level on the corrected images. We also compared the visual quality of the surface-rendered bone and tooth images. We observed that the proposed network outperformed Parker weighting and other GANs in all the image quality metrics. The computation time for the proposed network to process 336×336×336 3D images on a GPU-equipped personal computer was about 3 s, which was much shorter than those of SRGAN and m-WGAN, 50 s and 54 s, respectively.
半扫描图像重建与帕克加权可以纠正基于慢速扫描的牙科 CT 拍摄的牙科 CT 图像中的运动伪影。由于牙科 CT 图像中的残留半扫描伪影比医学 CT 图像中的伪影强得多,因此伪影常常持续存在,以至于从牙科 CT 图像计算得出的表面渲染骨和牙齿图像受到影响。我们使用了一种变体生成对抗网络(GAN),称为 U-WGAN,来校正牙科 CT 图像中的半扫描伪影。对于 GAN 的生成网络,我们使用了一个具有五个阶段的 U 形网络结构,以利用其高效的计算效率。我们使用 Wasserstein 损失函数在 40 名患者的牙科 CT 图像上对网络进行了训练。我们通过将输出图像与其他方法校正的半扫描图像(帕克加权和其他两种流行的 GAN,即 SRGAN 和 m-WGAN)进行比较来测试网络。对于定量比较,我们使用图像质量指标来衡量校正图像与全扫描图像(参考图像)的相似性以及校正图像上的噪声水平。我们还比较了表面渲染的骨骼和牙齿图像的视觉质量。我们观察到,与帕克加权和其他 GAN 相比,所提出的网络在所有图像质量指标上都表现更好。在配备 GPU 的个人计算机上处理 336×336×336 3D 图像时,所提出的网络的计算时间约为 3 秒,远短于 SRGAN 和 m-WGAN 的 50 秒和 54 秒。