Suppr超能文献

深度学习方法在从头药物设计中的应用:概述。

Deep learning approaches for de novo drug design: An overview.

机构信息

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.

Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China.

出版信息

Curr Opin Struct Biol. 2022 Feb;72:135-144. doi: 10.1016/j.sbi.2021.10.001. Epub 2021 Nov 22.

Abstract

De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.

摘要

从头药物设计是生成具有理想的药理学和物理化学性质的新型先导化合物的过程。深度学习(DL)在从头药物设计中的应用已成为热门话题,许多基于 DL 的方法已被开发用于分子生成任务。通常,这些方法是根据以下四个框架开发的:递归神经网络;编码器-解码器;强化学习;和生成对抗网络。在这篇综述中,我们首先介绍了基于 DL 的从头药物设计中使用的分子表示和评估指标。然后,我们总结了每个架构的特点。最后,展望了基于 DL 的分子生成的潜在挑战和未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验