Suppr超能文献

开发行为编码的机器学习模型。

Developing Machine Learning Models for Behavioral Coding.

机构信息

Wayne State University.

Henry Ford Health System.

出版信息

J Pediatr Psychol. 2019 Apr 1;44(3):289-299. doi: 10.1093/jpepsy/jsy113.

Abstract

OBJECTIVE

The goal of this research is to develop a machine learning supervised classification model to automatically code clinical encounter transcripts using a behavioral code scheme.

METHODS

We first evaluated the efficacy of eight state-of-the-art machine learning classification models to recognize patient-provider communication behaviors operationalized by the motivational interviewing framework. Data were collected during the course of a single weight loss intervention session with 37 African American adolescents and their caregivers. We then tested the transferability of the model to a novel treatment context, 80 patient-provider interactions during routine human immunodeficiency virus (HIV) clinic visits.

RESULTS

Of the eight models tested, the support vector machine model demonstrated the best performance, achieving a .680 F1-score (a function of model precision and recall) in adolescent and .639 in caregiver sessions. Adding semantic and contextual features improved accuracy with 75.1% of utterances in adolescent and 73.8% in caregiver sessions correctly coded. With no modification, the model correctly classified 72.0% of patient-provider utterances in HIV clinical encounters with reliability comparable to human coders (k = .639).

CONCLUSIONS

The development of a validated approach for automatic behavioral coding offers an efficient alternative to traditional, resource-intensive methods with the potential to dramatically accelerate the pace of outcomes-oriented behavioral research. The knowledge gained from computer-driven behavioral research can inform clinical practice by providing clinicians with empirically supported communication strategies to tailor their conversations with patients. Lastly, automatic behavioral coding is a critical first step toward fully automated eHealth/mHealth (electronic/mobile Health) behavioral interventions.

摘要

目的

本研究旨在开发一种机器学习监督分类模型,以使用行为代码方案自动对临床就诊记录进行编码。

方法

我们首先评估了八种最先进的机器学习分类模型在识别操作性动机访谈框架下的医患沟通行为方面的效果。数据是在 37 名非裔美国青少年及其照顾者进行单次减肥干预过程中收集的。然后,我们测试了模型在新的治疗环境中的可转移性,即 80 名患者-提供者在常规人类免疫缺陷病毒(HIV)诊所就诊期间的互动。

结果

在所测试的 8 种模型中,支持向量机模型表现最佳,在青少年组中达到了.680 的 F1 分数(模型精度和召回率的函数),在照顾者组中达到了.639。添加语义和上下文特征可提高准确性,青少年组中有 75.1%的话语和照顾者组中有 73.8%的话语被正确编码。未经修改,模型在 HIV 临床会话中正确分类了 72.0%的患者-提供者话语,其可靠性与人工编码者相当(k =.639)。

结论

开发一种经过验证的自动行为编码方法为传统的资源密集型方法提供了一种有效的替代方案,具有显著加快面向结果的行为研究步伐的潜力。通过为临床医生提供经过实证支持的沟通策略来调整他们与患者的对话,计算机驱动的行为研究所获得的知识可以为临床实践提供信息。最后,自动行为编码是实现完全自动化的电子/移动健康(eHealth/mHealth)行为干预的关键第一步。

相似文献

1
Developing Machine Learning Models for Behavioral Coding.
J Pediatr Psychol. 2019 Apr 1;44(3):289-299. doi: 10.1093/jpepsy/jsy113.
4
Automatically annotating topics in transcripts of patient-provider interactions via machine learning.
Med Decis Making. 2014 May;34(4):503-12. doi: 10.1177/0272989X13514777. Epub 2013 Nov 27.
5
Provider communication behaviors that predict motivation to change in black adolescents with obesity.
J Dev Behav Pediatr. 2013 Oct;34(8):599-608. doi: 10.1097/DBP.0b013e3182a67daf.
6
A Comparison of Natural Language Processing Methods for Automated Coding of Motivational Interviewing.
J Subst Abuse Treat. 2016 Jun;65:43-50. doi: 10.1016/j.jsat.2016.01.006. Epub 2016 Jan 28.
8
Exploring ambivalence in motivational interviewing with obese African American adolescents and their caregivers: A mixed methods analysis.
Patient Educ Couns. 2016 Jul;99(7):1162-1169. doi: 10.1016/j.pec.2016.02.008. Epub 2016 Feb 15.
9
Comparing thin slices of verbal communication behavior of varying number and duration.
Patient Educ Couns. 2015 Feb;98(2):150-5. doi: 10.1016/j.pec.2014.09.008. Epub 2014 Nov 8.
10
Feasibility of Using Communication Coaching to Teach Palliative Care Clinicians Motivational Interviewing.
J Pain Symptom Manage. 2020 Apr;59(4):787-793. doi: 10.1016/j.jpainsymman.2019.11.010. Epub 2019 Nov 23.

引用本文的文献

3
Natural language processing for mental health interventions: a systematic review and research framework.
Transl Psychiatry. 2023 Oct 6;13(1):309. doi: 10.1038/s41398-023-02592-2.
4
Opening the Black Box of Family-Based Treatments: An Artificial Intelligence Framework to Examine Therapeutic Alliance and Therapist Empathy.
Clin Child Fam Psychol Rev. 2023 Dec;26(4):975-993. doi: 10.1007/s10567-023-00451-6. Epub 2023 Sep 7.
5
What constitutes victims of toxicity - identifying drivers of toxic victimhood in multiplayer online battle arena games.
Front Psychol. 2023 Jun 16;14:1193172. doi: 10.3389/fpsyg.2023.1193172. eCollection 2023.
6
Prediction of Chinese clients' satisfaction with psychotherapy by machine learning.
Front Psychiatry. 2023 Jan 19;14:947081. doi: 10.3389/fpsyt.2023.947081. eCollection 2023.
7
Automatic rating of therapist facilitative interpersonal skills in text: A natural language processing application.
Front Digit Health. 2022 Aug 16;4:917918. doi: 10.3389/fdgth.2022.917918. eCollection 2022.
9
Introduction to the Coordinated Special Issue on eHealth/mHealth in Pediatric Psychology.
J Pediatr Psychol. 2019 Apr 1;44(3):259-262. doi: 10.1093/jpepsy/jsz010.

本文引用的文献

1
Identifying Effective Motivational Interviewing Communication Sequences Using Automated Pattern Analysis.
J Healthc Inform Res. 2019;3(1):86-106. doi: 10.1007/s41666-018-0037-6. Epub 2018 Oct 31.
2
Deep Neural Architectures for Discourse Segmentation in E-Mail Based Behavioral Interventions.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:443-452. eCollection 2019.
7
The Detroit Young Adult Asthma Project: Pilot of a Technology-Based Medication Adherence Intervention for African-American Emerging Adults.
J Adolesc Health. 2016 Oct;59(4):465-71. doi: 10.1016/j.jadohealth.2016.05.016. Epub 2016 Jul 27.
8
Computerized Intervention to Increase Motivation for Diabetes Self-Management in Adolescents with Type 1 Diabetes.
Health Psychol Behav Med. 2015;3(1):236-250. doi: 10.1080/21642850.2015.1079716. Epub 2015 Sep 3.
9
Interpretable Probabilistic Latent Variable Models for Automatic Annotation of Clinical Text.
AMIA Annu Symp Proc. 2015 Nov 5;2015:785-94. eCollection 2015.
10
A Comparison of Natural Language Processing Methods for Automated Coding of Motivational Interviewing.
J Subst Abuse Treat. 2016 Jun;65:43-50. doi: 10.1016/j.jsat.2016.01.006. Epub 2016 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验