Wayne State University.
Henry Ford Health System.
J Pediatr Psychol. 2019 Apr 1;44(3):289-299. doi: 10.1093/jpepsy/jsy113.
The goal of this research is to develop a machine learning supervised classification model to automatically code clinical encounter transcripts using a behavioral code scheme.
We first evaluated the efficacy of eight state-of-the-art machine learning classification models to recognize patient-provider communication behaviors operationalized by the motivational interviewing framework. Data were collected during the course of a single weight loss intervention session with 37 African American adolescents and their caregivers. We then tested the transferability of the model to a novel treatment context, 80 patient-provider interactions during routine human immunodeficiency virus (HIV) clinic visits.
Of the eight models tested, the support vector machine model demonstrated the best performance, achieving a .680 F1-score (a function of model precision and recall) in adolescent and .639 in caregiver sessions. Adding semantic and contextual features improved accuracy with 75.1% of utterances in adolescent and 73.8% in caregiver sessions correctly coded. With no modification, the model correctly classified 72.0% of patient-provider utterances in HIV clinical encounters with reliability comparable to human coders (k = .639).
The development of a validated approach for automatic behavioral coding offers an efficient alternative to traditional, resource-intensive methods with the potential to dramatically accelerate the pace of outcomes-oriented behavioral research. The knowledge gained from computer-driven behavioral research can inform clinical practice by providing clinicians with empirically supported communication strategies to tailor their conversations with patients. Lastly, automatic behavioral coding is a critical first step toward fully automated eHealth/mHealth (electronic/mobile Health) behavioral interventions.
本研究旨在开发一种机器学习监督分类模型,以使用行为代码方案自动对临床就诊记录进行编码。
我们首先评估了八种最先进的机器学习分类模型在识别操作性动机访谈框架下的医患沟通行为方面的效果。数据是在 37 名非裔美国青少年及其照顾者进行单次减肥干预过程中收集的。然后,我们测试了模型在新的治疗环境中的可转移性,即 80 名患者-提供者在常规人类免疫缺陷病毒(HIV)诊所就诊期间的互动。
在所测试的 8 种模型中,支持向量机模型表现最佳,在青少年组中达到了.680 的 F1 分数(模型精度和召回率的函数),在照顾者组中达到了.639。添加语义和上下文特征可提高准确性,青少年组中有 75.1%的话语和照顾者组中有 73.8%的话语被正确编码。未经修改,模型在 HIV 临床会话中正确分类了 72.0%的患者-提供者话语,其可靠性与人工编码者相当(k =.639)。
开发一种经过验证的自动行为编码方法为传统的资源密集型方法提供了一种有效的替代方案,具有显著加快面向结果的行为研究步伐的潜力。通过为临床医生提供经过实证支持的沟通策略来调整他们与患者的对话,计算机驱动的行为研究所获得的知识可以为临床实践提供信息。最后,自动行为编码是实现完全自动化的电子/移动健康(eHealth/mHealth)行为干预的关键第一步。